Skip to main content
Log in

Pyrophanite pseudomorphs after perovskite in Perkupa serpentinites (Hungary): a microtextural study and geological implications

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

An Erratum to this article was published on 21 May 2014

Abstract

Pyrophanite in serpentinite at Perkupa (Hungary) is described in detail for the first time as a replacement product of perovskite. It occurs as a 20- to 30-μm-wide rim, mantling a remnant core composed of perovskite or its alteration products. The pyrophanite rim consists of an inner zone, representing a pseudomorph after perovskite, and an outer overgrowth zone. Raman mapping and electron backscatter diffraction data show that the pyrophanite rims typically represent single crystals rather than being composed of multiple domains in different crystallographic orientations. Perovskite occurs exclusively in the core of pyrophanite and was identified as the orthorhombic CaTiO3 phase, based on Raman spectra. Heterogeneous, polyphase mineral cores, consisting of calcite, anatase and/or brookite, kassite, and Mn-bearing kassite, in some cases in association with relict perovskite, are typical in the larger pyrophanite-rimmed grains. The crystallographically coherent pyrophanite rims could have formed through a process where the precursor perovskite crystal acted as a structural template for the newly forming phase, that is, by interface-coupled dissolution reprecipitation during serpentinization of the precursor rock. This alteration of perovskite to pyrophanite was not complete, resulting in the presence of perovskite fragments enclosed in pyrophanite. During the metamorphic evolution of the rock, some of the remnant perovskite cores further altered to TiO2 polymorphs (anatase and brookite) and calcite, via transitional alteration products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Árkai P, Kovács S (1986) Diagenesis and regional metamorphism of the Mesozoic of Aggtelek–Rudabánya Mountains (Northeast Hungary). Acta Geol Hung 29:349–373

    Google Scholar 

  • Brousse R, Maury RC (1976) Paragenèse manganésifère d’une rhyolite hyperalcaline du Mont-Dore. Bull Soc Franç Miner Cristallogr 99:300–303

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2000) Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. Can Mineral 38:975–994

    Article  Google Scholar 

  • Craig JR, Sandhaus DJ, Guy RE (1985) Pyrophanite MnTiO3 from Sterling Hill, New Jersey. Can Mineral 23:491–494

    Google Scholar 

  • Crerar DA, Cormick RK, Barnes HL (1980) Geochemistry of manganese: an overview. In: Varentsov IM, Grasselly Gy (eds) Geology and geochemistry of manganese (vol 1. General problems: mineralogy, geochemistry, methods). Akadémiai Kiadó, Budapest, pp 293–334

  • Dasgupta S, Fukuoka M, Roy S (1984) Hematite-pyrophanite intergowth in gondite, Chikla area, Sausar Group, India. Mineral Mag 48:558–560

    Article  Google Scholar 

  • Galuskin E, Galuskina I, Dzierżanowski P (2004) New natural phase MnTi2O4(OH)2 × H2O(?) with uncertain structure–indicator of sea floor metasomatism. Mineral Soc Pol 24:157–160 (special papers)

    Google Scholar 

  • Gaspar JC, Wyllie PJ (1983) Ilmenite (high Mg, Mn, Nb) in the carbonatites from the Jacupiranga Complex, Brazil. Am Mineral 68:960–971

    Google Scholar 

  • Gillet P, Guyot F, Price GD, Tournerie B, Le Cleach A (1993) Phase changes and thermodynamic properties of CaTiO3. Spectroscopic data, vibrational modeling and some insights on the properties of MgSiO3 perovskite. Phys Chem Miner 20:159–170

    Google Scholar 

  • Glikin AE (2008) Polymineral-metasomatic crystallogenesis. Springer, Netherlands 314 p

    Google Scholar 

  • Glikin AE, Sinai MY (1983) Experimental investigation of monocrystal pseudomorph formation. Zapiski VMO 6:742–748

    Google Scholar 

  • Grey IE, Mumme WG, Pekov IV, Pushcharovsky DYu (2003) The crystal structure of chromian kassite from the Saranovskoye deposit, Northern Urals, Russia. Am Mineral 88:1331–1335

    Google Scholar 

  • Hamberg A (1890) Mineralogische Studien. Geol Fören Förhandl 12:567–637

    Article  Google Scholar 

  • Harangi Sz, Szabó Cs, Józsa S, Szoldán Zs, Árva-Sós E, Balla M, Kubovics I (1996) Mesozoic igneous suites in Hungary: implications for genesis and tectonic setting in the Northwestern Part of Tethys. Int Geol Rev 38:336–360

    Article  Google Scholar 

  • Hariya Y (1980) On the geochemistry and formation of manganese dioxide deposits. In: Varentsov IM, Grasselly Gy (eds) Geology and geochemistry of manganese (vol 1. General problems: mineralogy, geochemistry, methods). Akadémiai Kiadó, Budapest, pp 353–365

  • Hem JD (1972) Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol Soc Am Bull 83:443–450

    Article  Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  Google Scholar 

  • Horváth P (1997) High-pressure metamorphism and P-T path of the metabasic rocks in the borehole Komjáti-11, Bódva Valley area, NE Hungary. Acta Min Pet Szeged 38:151–163

    Google Scholar 

  • Horváth P (2000) Metamorphic evolution of gabbroic rocks of the Bódva Valley Ophiolite Complex, NE Hungary. Geol Carp 51:121–129

    Google Scholar 

  • Horváth P, Árkai P (2005) Amphibolite-bearing assemblages as indicators of microdomain-scale equilibrium conditions in metabasites: an example from Alpine ophiolites of the Meliata Unit, NE Hungary. Mineral Petrol 84:233–258

    Article  Google Scholar 

  • Ivan P (2002) Relics of the Meliata ocean crust: geodynamic implications of mineralogical, petrological and geochemical proxies. Geol Carp 53:245–256

    Google Scholar 

  • Kovács S (1984) North Hungarian Triassic facies types. Acta Geol Hung 27:251–264

    Google Scholar 

  • Kovács S, Less Gy, Piros O, Réti Zs, Róth L (1989) Triassic formations of the Aggtelek-Rudabánya Mountains (NE Hungary). Acta Geol Hung 32:31–63

    Google Scholar 

  • Krot AN, Rubin AE, Kononkova NN (1993) First occurrence of pyrophanite (MnTiO3) and baddeleyite (ZrO2) in an ordinary chondrite. Meteoritics 28:232–239

    Article  Google Scholar 

  • Lee DE (1955) Occurrence of pyrophanite in Japan. Am Mineral 40:32–40

    Google Scholar 

  • Less Gy (2000) Polyphase evolution of the structure of the Aggtelek-Rudabánya Mountains (NE Hungary); the southernmost element of the Inner Western Carpathians: a review. Slovak Geol Mag 6:260–268

    Google Scholar 

  • Less Gy, Kovács S, Szentpétery I (eds), Grill J, Róth L, Gyuricza Gy, Sásdi L, Piros O, Réti Zs, Elsholz L, Árkai P, Nagy E, Borka Zs, Harnos J, Zelenka T (2006) The geology of the Aggtelek-Rudabánya mountains (Map series of the Hungarian regions) (in Hungarian with English summaries): Az Aggtelek-Rudabányai-hegység földtana (Magyarország tájegységei térképsorozata). MÁFI, Budapest, pp 1–92

  • Liferovich RP, Mitchell RH (2006) The pyrophanite-geikielite solid-solution: crystal structures of the Mn1–XMgXTiO3 series (0 < x < 0.7). Can Mineral 44:1099–1107

    Article  Google Scholar 

  • Liipo JP, Vuollo JI, Nykänen VM, Piirainen TA (1994) Pyrophanite and ilmenite in serpentinized wehrlite from Ensilä, Kuhmo greenstone belt, Finland. Eur J Mineral 6:145–150

    Google Scholar 

  • Lindh A, Malmstrom L (1984) The occurrence and formation of pyrophanite in late-formed magnetite porphyroblasts. Neues Jahrb Mineral Monats 13–21

  • Mikhailova YA, Konopleva NG, Yakovenchuk VN, Ivanyuk GY, Men’shikov YP, Pakhomovsky YA (2007) Corundum-group minerals in rocks of the Khibiny alkaline pluton, Kola Peninsula. Geol Ore Dep 49:590–598

    Article  Google Scholar 

  • Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder Bay 318 p

    Google Scholar 

  • Mitchell RH, Chakhmouradian AR (1998) Instability of perovskite in a CO2-rich environment: examples from carbonatite and kimberlite. Can Mineral 36:939–951

    Google Scholar 

  • Mitchell RH, Liferovich RP (2004) Zincian pyrophanite-ecandrewsite solid-solution series and associated minerals from lujavrite, Pilansberg alkaline complex, South Africa. Can Mineral 42:1169–1178

    Article  Google Scholar 

  • Mücke A, Woakes M (1986) Pyrophanite: a typical mineral in the Pan-African province of western and central Nigeria. J Afr Earth Sci 5:675–689

    Google Scholar 

  • Nayak BR, Mohapatra BK (1998) Two morphologies of pyrophanite in Mn-rich assemblages, Gangpur Group, India. Mineral Mag 62:847–856

    Article  Google Scholar 

  • Nemecz E (1956) The investigation of the serpentinite from Perkupa. In Hungarian: A perkupai szerpentin vizsgálata. Földt Közl 86:424–434

  • Portnov AM (1965) Pyrophanite from northern Baikalia. Dokl Acad Sci USSR Earth Sci Sect 153:126–138

    Google Scholar 

  • Putiš M, Koppa M, Snárska B, Koller F, Uher P (2012) The blueschist-associated perovskite-andradite-bearing serpentinized harzburgite from Dobšiná (the Meliata Unit), Slovakia. J Geosci 57:221–240

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis CV, Mezger K (2004) A mechanism of mineral replacement: isotope tracing in the model system KCl-KBr-H2O. Geochim Cosmochim Acta 68:2839–2848

    Article  Google Scholar 

  • Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786

    Article  Google Scholar 

  • Radvanec M (2009) P–T path of perovskite-clinopyroxene-grossular bearing fragments enclosed in meta-peridotite (Dankova, Gemer area, Western Carpathians). 8th international eclogite conference, Xining, China, Abstracts, pp 121–122

  • Réti Zs (1985) Triassic ophiolite fragments in evaporitic melange, Northern Hungary. Ofioliti 10:411–422

    Google Scholar 

  • Réti Zs (1987) Comparison between Mesozoic mafic and ultramafic complexes in Northern Hungary. Ofioliti 12:43–52

    Google Scholar 

  • Sasaki K, Nakashima K, Kanisawa S (2003) Pyrophanite and high Mn ilmenite discovered in the Cretaceous Tono pluton, NE Japan. Neues Jahrb Mineral Monats 2003:302–320. http://dx.doi.org/10.1127/0028-3649/2003/2003-0302

  • Suwa K, Enani M, Hiraiwa I, Yang T (1987) Zn-Mn ilmenite in the Kuiqi granite from Fuzhou, Fujian province, East China. Mineral Petrol 36:111–120

    Article  Google Scholar 

  • Tsusue A (1973) The distribution of manganese and iron between ilmenite and granitic magma in the Osumi Peninsula, Japan. Mineral Petrol 40:305–314

    Article  Google Scholar 

  • Ulrych J, Lang M (1985) Accessory pyrophanite in granite and manganojacobsite in dioritic amphibolite from the Manicaragua Zone, central Cuba. Chem Erde 44:273–280

    Google Scholar 

  • Veilla N, Jiménez-Millán J (2003) Origin and metamorphic evolution of rocks with pyrophanite from the Iberian Massif (SW Spain). Mineral Petrol 78:73–91

    Article  Google Scholar 

  • Wedepohl KH (1980) Geochemical behavior of manganese. In: Varentsov IM, Grasselly Gy (eds) Geology and geochemistry of manganese (vol 1. General problems: mineralogy, geochemistry, methods). Akadémiai Kiadó, Budapest, pp 335–351

  • Zaccarini F, Garuti G, Ortiz-Suarez A, Carugno-Duran A (2004) The paragenesis of pyrophanite from Sierra de Comechingones, Córdoba, Argentina. Can Mineral 42:155–168

    Article  Google Scholar 

  • Žák L (1971) Pyrophanite from Chvaletice (Bohemia). Mineral Mag 38:312–316

    Article  Google Scholar 

  • Železný V, Cockayne E, Petzelt J, Limonov MF, Usvyat DE, Lemanov VV, Volkov AA (2002) Temperature dependence of infrared-active phonons in CaTiO3: a combined spectroscopic and first-principles study. Phys Rev B 66:224303

    Article  Google Scholar 

Download references

Acknowledgments

The European Union and the European Social Fund provided financial support for the project through grant agreements no. TÁMOP 4.2.1./B-09/KMR-2010-0003 (EBSD) and TÁMOP-4.2.1.B-10/2/KONV-2010-0001 within the framework of the New Hungary Development Plan. The Raman microscope at the Eötvös University was purchased through funding by the Baross Gábor Programme (REG-KM-09-1-2009-0044). We also acknowledge the help of the Department of Mineral Sciences, Smithsonian National Museum of Natural History, Washington, USA, for providing standards used in the WDX measurements. We would like to thank Guest Editor Anton R. Chakhmouradian, who encouraged us during this work and also gave useful ideas for the preparation of the manuscript. We are also thankful to Evgeny A. Galuskin and Victor V. Sharygin, whose detailed comments and corrections helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zajzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zajzon, N., Váczi, T., Fehér, B. et al. Pyrophanite pseudomorphs after perovskite in Perkupa serpentinites (Hungary): a microtextural study and geological implications. Phys Chem Minerals 40, 611–623 (2013). https://doi.org/10.1007/s00269-013-0596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0596-2

Keywords

Navigation