Skip to main content

Advertisement

Log in

Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The sound velocities of two aluminum-rich phases in the lower mantle, hexagonal new Al-rich phase (NAL) and its corresponding high-pressure polymorph orthorhombic Ca-ferrite-type phase (CF), were determined with the Brillouin scattering method in a pressure range from 9 to 73 GPa at room temperature. Both NAL and CF samples have identical chemical composition of Na0.4Mg0.6Al1.6Si0.4O4 (40 % NaAlSiO4–60 % MgAl2O4). Infrared laser annealing in the diamond anvil cell was performed to minimize the stress state of the sample and obtain the high-quality Brillouin spectra. The results show shear modulus at zero pressure G 0 = 121.960 ± 0.087 GPa and its pressure derivative G’ = 1.961 ± 0.009 for the NAL phase, and G 0 = 129.653 ± 0.059 GPa and G’ = 2.340 ± 0.004 for the CF phase. The zero-pressure shear velocities of the NAL and CF phases are obtained to be 5.601 ± 0.005 km/sec and 5.741 ± 0.001 km/sec, respectively. We also found that shear velocity increases by 2.5 % upon phase transition from NAL to CF at around 40 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751

    Article  Google Scholar 

  • Asahara Y, Murakami M, Ohishi Y, Hirao N, Hirose K (2010a) Sound velocity measurement in liquid water up to 25 GPa and 900 K: implications for densities of water at lower mantle conditions. Earth Planet Sci Lett 289:479–485

    Article  Google Scholar 

  • Asahara Y, Hirose K, Ohishi Y, Hirao N, Murakami M (2010b) Thermoelastic properties of ice VII and its high-pressure polymorphs: implications for dynamics of cold slab subduction in the lower mantle. Earth Planet Sci Lett 299:474–482

    Article  Google Scholar 

  • Guignot N, Andrault D (2004) Equations of state of Na-K-Al host phase and implications for MORB density in the lower mantle. Phys Earth Planet Inter 143–144:107–128

    Article  Google Scholar 

  • Hammersley AP (1998) Fit2d: V9.129 reference manual v3.1. Inter Rep ESRF98HA01, ESRF, Grenoble

  • Hirose K, Fei YW (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim Cosmochim Acta 66:2099–2108

    Article  Google Scholar 

  • Hirose K, Fei Y, Ma Y, Mao HK (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56

    Article  Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239–251

    Article  Google Scholar 

  • Imada S, Hirose K, Ohishi Y (2011) Stabilities of NAL and Ca-ferrite-type phases on the join NaAlSiO4-MgAl2O4 at high pressure. Phys Chem Minerals 8:557–560

    Article  Google Scholar 

  • Imada S, Hirose K, Komabayashi T, Suzuki T, Ohishi Y (2012) Compression of Na0.4Mg0.6Al1.6Si0.4O4 NAL and Ca-ferrite-type phases. Phys Chem Minerals 39:525–530

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1993) Phase transformations in subducted oceanic crust and buoyancy relationships depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Karki B, Stixrude L, Crain J (1997) Ab initio elasticity of three high-pressure polymorphs of silica. Geophys Res Lett 24:3269–3272

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2012) Phase stability and elastic properties of the NAL and CF phases in the NaMg2Al5SiO12 system from first principles. Am Mineral 97:305–314

    Article  Google Scholar 

  • Kesson SE, Fitz GJD, Shelley JMG (1994) Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature 372:767–769

    Article  Google Scholar 

  • Kudo Y, Hirose K, Murakami M, Asahara Y, Ozawa H, Ohishi Y, Hirao N (2012) Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies. Earth Planet Sci Lett 349–350:1–7

    Article  Google Scholar 

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of Earth’s mantle. Nature 450:866–869

    Article  Google Scholar 

  • Liu L, Bi Y, Xu J, Chen XR (2010) Ab initio study of the elastic properties of sodium chloride at high pressure. Phys B 405:2175–2180

    Article  Google Scholar 

  • Miyajima N, Yagi T, Hirose K, Kondo T, Fujino K, Miura H (2001) Potential host phase of aluminum and potassium of the Earth’s lower mantle. Am Mineral 86:740–746

    Google Scholar 

  • Murakami M, Sinogeikin SV, Hellwig H, Bass JD, Li J (2007) Sound velocity of MgSiO3 perovskite to Mbar pressure. Earth Planet Sci Lett 256:47–56

    Article  Google Scholar 

  • Murakami M, Asahara Y, Ohishi Y, Hirao N, Hirose K (2009a) Development of in situ Brillouin spectroscopy at high pressure and temperature with synchrotron radiation and infrared laser heating system: application to the Earth’s deep interior. Phys Earth Planet Inter 174:282–291

    Article  Google Scholar 

  • Murakami M, Ohishi Y, Hirao N, Hirose K (2009b) Elasticity of MgO to 130 GPa: implications for lower mantle mineralogy. Earth Planet Sci Lett 277:123–129

    Article  Google Scholar 

  • Murakami M, Ohishi Y, Hirao N, Hirose K (2012) A perovskite lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485:90–94

    Article  Google Scholar 

  • Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J, Muto S, Ishii H, Hiraoka N (2011) Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473:199–202

    Article  Google Scholar 

  • Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 90:57–63

    Article  Google Scholar 

  • Ono A, Akaogi M, Kojitani H, Yamashita K, Kobayashi M (2009) High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems NaAlSiO4-MgAl2O4 and CaAl2O4-MgAl2O4. Phys Earth Planet Inter 174:39–49

    Article  Google Scholar 

  • Perrillat JP, Ricolleau A, Daniel I, Fiquet G, Mezouar M, Guignot N, Cardon H (2006) Phase transformations of subducted basaltic crust in the upmost lower mantle. Phys Earth Planet Inter 157:139–149

    Article  Google Scholar 

  • Ricolleau A, Fiquet G, Addad A, Menguy N, Vanni C, Perrillat JP, Daniel I, Cardon H, Guignot N (2008) Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. Am Mineral 93:144–153

    Article  Google Scholar 

  • Ricolleau A, Perrillat JP, Fiquet G, Daniel I, Matas J, Addad A, Menguy N, Cardon H, Mezouar M, Guignot N (2010) Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J Geophys Res 115:B08202. doi:10.1029/2009JB006709

    Article  Google Scholar 

  • Sata N, Shen G, Rivers ML, Sutton SR (2002) Pressure-volume equation of state of the high-pressure B2 phase of NaCl. Phys Rev B 65:104114. doi:10.1103/PhysRevB.65.104114

    Article  Google Scholar 

  • Whitfield CH, Brody EM, Bassett WA (1976) Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond cell. Rev Sci Instrum 47:942–947

    Article  Google Scholar 

  • Wu Y, Fei YW, Jin ZM, Liu XY (2009) The fate of subducted upper continental crust: an experimental study. Earth Planet Sci Lett 282:275–284

    Article  Google Scholar 

  • Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79

    Article  Google Scholar 

  • Yamamoto S, Nakajima J, Hasegawa A, Maruyama S (2009) Izu-Bonin arc subduction under the Honshu island, Japan: evidence from geological and seismological aspect. Gondwana Res 16:572–580

    Article  Google Scholar 

  • Yoneda A, Song MS (2005) Frequency domain analysis of ultrasonic velocity: an alternative bond effect correction constraining bond properties. J Appl Phys 97:024908. doi:10.1063/1.1834711

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers and editor of Professor Masanori Matsui for their very constructive comments and suggestions in the reviewing process, which helped us greatly in improving the manuscript. The enlightening discussions were conducted with Professor Heping Li and Dr Shuangming Shan from Laboratory for High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, CAS. Dr Saori Imada provides the starting material. The X-ray diffraction measurements were conducted at BL10XU, SPring-8 (Proposal no. 2011B0087 and 2012A0087). This research was financially supported by the “135” Program of Institute of Geochemistry, CAS, the Knowledge-Innovation Key Orientation Project of CAS (KZCX2-YWQN110), NSF of China (41174079 and 40974051), and the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, L., Kudo, Y., Hirose, K. et al. Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method. Phys Chem Minerals 40, 195–201 (2013). https://doi.org/10.1007/s00269-012-0558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0558-0

Keywords

Navigation