Skip to main content
Log in

Co3O4 nanoparticles on the surface of halloysite nanotubes

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Co3O4 nanoparticles were successfully deposited on the surface of natural halloysite nanotubes (HNTs) to produce Co3O4/HNTs composites. The structure and morphology of the samples were characterized using X-ray diffraction, field-emission scanning electron microscope, transmission electron microscope and Fourier transform infrared. The results indicated that Co3O4 nanoparticles were uniformly attached on the surface of HNTs with narrow size distribution. Co3O4/HNTs exhibited an excellent photocatalytic efficiency for degradation of methyl blue under UV light, better than Co3O4 and HNTs mixture, HNTs and pure Co3O4. The mechanism of enhanced photocatalytic activity of Co3O4/HNTs was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437–1443

    Article  Google Scholar 

  • Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. Angew Chem Int Ed 50:7238–7266

    Article  Google Scholar 

  • Azadi P, Farnood R, Meier E (2010) Preparation of multiwalled carbon nanotube-supported nickel catalysts using incipient wetness method. J Phys Chem A 114:3962–3968

    Article  Google Scholar 

  • Cao AM, Hu JS, Liang HP, Song WG, Wan LJ, He XL, Gao XG, Xia SH (2006) Hierarchically structured cobalt oxide (Co3O4) the morphology control and its potential in sensors. J Phys Chem B 110:15858–15863

    Article  Google Scholar 

  • Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J (2009) Defect chemistry and catalytic activity of nanosized Co3O4. Chem Mater 174:1939–1947

    Article  Google Scholar 

  • Chen L, Yin S-F, Huang R, Zhang Q, Luo SL, Au CT (2012) Hollow peanut-like m-BiVO4: facile synthesis and solar-light-induced photocatalytic property. CrystEngComm 14:4217–4222

    Article  Google Scholar 

  • Delannoy L, El Hassan N, Musi A, Le To NN, Krafft J-M, Louis C (2006) Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J Phys Chem B 110:22471–22478

    Article  Google Scholar 

  • Du ML, Guo BC, Jia DM (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582

    Google Scholar 

  • Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. Carbon Nanotubes 111:13–62

    Article  Google Scholar 

  • Gualtieri AF (2001) Synthesis of sodium zeolites from a natural halloysite. Phys Chem Miner 28:719–728

    Article  Google Scholar 

  • Guimarães L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114:11358–11363

    Article  Google Scholar 

  • Hu PW, Yang HM (2012) Sb-SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation. Phys Chem Miner 39:339–349

    Article  Google Scholar 

  • Hu LH, Peng Q, Li YD (2008) Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc 130:16136–16137

    Article  Google Scholar 

  • Hughes AD, King MR (2010) Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir 26:12155–12164

    Article  Google Scholar 

  • Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48:1841–1844

    Article  Google Scholar 

  • Joussein E, Pettit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals a review. Clay Miner 40:383–426

    Article  Google Scholar 

  • Levis SR, Deasy PB (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134

    Article  Google Scholar 

  • Li W, Jung H, Hoa ND, Kim D, Hong S-K, Kim H (2010) Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application. Sens Actuators B Chem 150:160–166

    Article  Google Scholar 

  • Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  Google Scholar 

  • Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  Google Scholar 

  • Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820

    Article  Google Scholar 

  • Natile MM, Glisenti A (2002) Study of surface reactivity of cobalt oxides interaction with methanol. Langmuir 14:3090–3099

    Google Scholar 

  • Pauporté T, Mendoza L, Cassir M, Bernard MC, Chivot J (2005) Direct low-temperature deposition of crystallized CoOOH films by potentiostatic electrolysis. J Electrochem Soc 152:C49–C53

    Article  Google Scholar 

  • Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Mohwald H (2008) Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C 112:958–964

    Article  Google Scholar 

  • Takada S, Fujii M, Kohiki S (2001) Intraparticle magnetic properties of Co3O4 nanocrystals. Nano Lett 1:379–382

    Article  Google Scholar 

  • Veerabadran NG, Mongayt D, Torchilin V, Price RR, Lvov YM (2009) Organized shells on clay nanotubes for controlled release of macromolecules. Macromol Rapid Commun 30:99–103

    Article  Google Scholar 

  • Wang L, Chen J, Ge L, Zhu Z, Rudolph V (2011) Halloysite-nanotube-supported ru nanoparticles for ammonia catalytic decomposition to produce COx-free hydrogen. Energy Fuels 25:3408–3416

    Article  Google Scholar 

  • Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239

    Article  Google Scholar 

  • Wöllenstein J, Burgmair M, Plescher G, Sulima T, Hildenbrand J, Böttner H, Eisele I (2003) Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens Actuators B Chem 93:442–448

    Article  Google Scholar 

  • Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593

    Article  Google Scholar 

  • Zhai R, Zhang B, Liu L, Xie YD, Zhang HQ, Liu JD (2010) Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal Commun 12:259–263

    Article  Google Scholar 

  • Zhang Y, Yang HM (2012) Halloysite nanotubes coated with magnetic nanoparticles. Appl Clay Sci 56:97–102

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (50774095) and the Scientific Research Foundation for ROCS of SEM (2011-1139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, H. Co3O4 nanoparticles on the surface of halloysite nanotubes. Phys Chem Minerals 39, 789–795 (2012). https://doi.org/10.1007/s00269-012-0533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0533-9

Keywords

Navigation