Skip to main content
Log in

The enigma of post-perovskite anisotropy: deformation versus transformation textures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The D′′ region that lies just above the core mantle boundary exhibits complex anisotropy that this is likely due to preferred orientation (texturing) of the constituent minerals. (Mg,Fe)SiO3 post-perovskite is widely thought to be the major mineral phase of the D′′. Texture development has been studied in various post-perovskite phases (MgSiO3, MgGeO3, and CaIrO3), and different results were obtained. To clarify this controversy, we report on transformation and deformation textures in MgGeO3 post-perovskite synthesized and deformed at room temperature in the diamond anvil cell. Transformed from the enstatite phase, MgGeO3 post-perovskite exhibits a transformation texture characterized by (100) planes at high angles to the direction of compression. Upon subsequent deformation, this texture changes and (001) lattice planes become oriented nearly perpendicular to compression, consistent with dominant (001)[100] slip. When MgGeO3 post-perovskite is synthesized from the perovskite phase, a different transformation texture is observed. This texture has (001) planes at high angle to compression and becomes slightly stronger upon compression. We also find that the yield strength of MgGeO3 post-perovskite is dependent on grain size and texture. Finer-grained samples exhibit higher yield strength and are harder to induce plastic deformation. Strong textures also affect the yield strength and can result in higher differential stresses. The inferred dominant (001) slip for pPv is significant for geophysics, because, when applied to geodynamic convection models, it predicts the observed anisotropies of S-waves as well as an anti-correlation between P- and S-waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammann MW, Brodholt JP, Wookey J, Dobson DP (2010) First-principles constraints on diffusion in lower-mantle minerals and a weak D′′ layer. Nature 465:462–465

    Article  Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:7953–17979

    Article  Google Scholar 

  • Bunge H-J (1982) Texture analysis in materials science—mathematical methods. Butterworths, London

    Google Scholar 

  • Carrez P, Ferré D, Cordier P (2007a) Peierls-Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philos Mag 87:3229–3247

    Article  Google Scholar 

  • Carrez P, Ferre D, Cordier P (2007b) Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature 446:68–70

    Article  Google Scholar 

  • Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682

    Article  Google Scholar 

  • Dupas-Bruzek C, Tingle TN, Green HW II, Doukhan N, Doukhan J (1998) The rheology of olivine and spinel magnesium germanate (Mg2GeO4): TEM study of the defect microstructures. Phys Chem Miner 25:501–514

    Article  Google Scholar 

  • Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth’s lower mantle. Science 320:626–628

    Article  Google Scholar 

  • Hammersley AP (1997) FIT2D: an introduction and overview. ESRF Internal Report, ESRF97HA02T

  • Helmberger D, Lay T, Ni S, Gurnis M (2005) Deep mantle structure and the postperovskite phase transition. Proc Natl Acad Sci USA 102:17257–17263

    Article  Google Scholar 

  • Hirose K, Nagaya Y, Merkel S, Ohishi Y (2010) Deformation of MnGeO3 post-perovskite at lower mantle pressure and temperature. Geophys Res Lett 37:L20302

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Hunt SA, Weidner DJ, Li L, Wang L, Walte NP, Brodholt JP, Dobson DP (2009) Weakening of calcium iridate during its transformation from perovskite to post-perovskite. Nat Geosci 2:794–797

    Article  Google Scholar 

  • Hustoft J, Shim S, Kubo A, Nishiyama N (2008a) Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa. Am Miner 93:1654–1658

    Article  Google Scholar 

  • Hustoft J, Catalli K, Shim S, Kubo A, Prakapenka VB, Kunz M (2008b) Equation of state of NaMgF3 postperovskite: implication for the seismic velocity changes in the D″ region. Geophys Res Lett 35:L10309

    Article  Google Scholar 

  • Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430:442–445

    Article  Google Scholar 

  • Ischia G, Wenk H-R, Lutterotti L, Berberich F (2005) Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images. J Appl Crystallogr 38:377–380

    Article  Google Scholar 

  • Karato SI, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu Rev Earth Planet Sci 36:59–95

    Article  Google Scholar 

  • Karki BB (2000) Thermal pressure in MgO and MgSiO3 perovskite at lower mantle conditions. Am Miner 85:1447–1451

    Google Scholar 

  • Karki BB, Stixrude L, Wentzcovitch RM (2001) High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev Geophys 39:507–534

    Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 56:1758–1775

    Article  Google Scholar 

  • Kubo A, Kiefer B, Shen G, Prakapenka VB, Cava RJ, Duffy TS (2006) Stability and equation of state of the post-perovskite phase in MgGeO3 to 2 Mbar. Geophys Res Lett 33:L12S12

    Article  Google Scholar 

  • Kubo A, Kiefer B, Shim S, Shen G, Prakapenka VB, Duffy TS (2008) Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar. Am Miner 93:965–976

    Article  Google Scholar 

  • Lay T, Garnero EJ (2007) Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure. In: Hirose K et al (ed) Post-perovskite: the last mantle phase transition, AGU monograph, vol 174. pp 129–154

  • Liermann HP, Merkel S, Miyagi L, Wenk HR, Shen G, Cynn H, Evans WJ (2009) Experimental method for in situ determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell. Rev Sci Instrum 80:104501

    Article  Google Scholar 

  • Liu H, Chen J, Hu J, Martin CD, Weidner DJ, Häusermann D, Mao HK (2005) Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure. Geophys Res Lett 32:L04304

    Article  Google Scholar 

  • Loubet N, Ribe NM, Gamblin Y (2009) Deformation modes of subducted lithosphere at the core-mantle boundary: an experimental investigation. Geochem Geophys Geosyst 10:Q10004

    Article  Google Scholar 

  • Lutterotti L (2006) http://www.ing.unitn.it/~maud/Tutorial/sizestrain/InstrumentalBroadening.pdf

  • Lutterotti L, Matthies S, Wenk HR, Schultz AS, Richardson JW (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594

    Article  Google Scholar 

  • Martin CD, Crichton WA, Liu H, Prakapenka V, Chen J, Parise JB (2006a) Rietveld structure refinement of perovskite and post-perovskite phases of NaMgF3 (Neighborite) at high pressures. Am Miner 91:1703–1706

    Article  Google Scholar 

  • Martin CD, Crichton WA, Liu H, Prakapenka V, Chen J, Parise JB (2006b) Phase transitions and compressibility of NaMgF3 (Neighborite) in perovskite- and post-perovskite-related structures. Geophys Res Lett 33:L11305

    Article  Google Scholar 

  • Matthies S, Humbert M (1993) The realization of the concept of a geometric mean for calculating physical constants of polycrystalline materials. Physica Status Solidi (b) 177:K47–K50

    Article  Google Scholar 

  • Matthies S, Vinel GW (1982) On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Physica Status Solidi (b) 112:K111–K114

    Article  Google Scholar 

  • Matthies S, Priesmeyer HG, Daymond MR (2001) On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J Appl Crystallogr 34:585–601

    Article  Google Scholar 

  • McNamara AK, van Keken PE, Karato SI (2002) Development of anisotropic structure in the Earth’s lower mantle by solid-state convection. Nature 416:310–314

    Article  Google Scholar 

  • McNamara AK, Keken PE, Karato SI (2003) Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. J Geophys Res 108:2230

    Article  Google Scholar 

  • Merkel S, Wenk HR, Gillet P, Mao HK, Hemley RJ (2004) Deformation of polycrystalline iron up to 30 GPa and 1000 K. Phys Earth Planet Interiors 145:239–251

    Article  Google Scholar 

  • Merkel S, Kubo A, Miyagi L, Speziale S, Duffy TS, Mao HK, Wenk HR (2006) Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311:644–646

    Article  Google Scholar 

  • Merkel S, McNamara AK, Kubo A, Speziale S, Miyagi L, Meng Y, Duffy TS, Wenk HR (2007) Deformation of (Mg, Fe)SiO3 post-perovskite and D′′ anisotropy. Science 316:1729–1732

    Article  Google Scholar 

  • Metsue A, Carrez P, Mainprice D, Cordier P (2009) Numerical modelling of dislocations and deformation mechanisms in CaIrO3 and MgGeO3 post-perovskites—comparison with MgSiO3 post-perovskite. Phys Earth Planet Interiors 174:165–173

    Article  Google Scholar 

  • Miyagi L (2010b) Deformation and texture development in deep earth mineral phases: implications for seismic anisotropy and dynamics. Ph.D. thesis, University of California Berkeley

  • Miyagi L, Nishiyama N, Wang Y, Kubo A, West DV, Cava RJ, Duffy TS, Wenk HR (2008a) Deformation and texture development in CaIrO3 post-perovskite phase up to 6 GPa and 1300 K. Earth Planet Sci Lett 268:515–525

    Article  Google Scholar 

  • Miyagi L, Kunz M, Knight J, Nasiatka J, Voltolini M, Wenk HR (2008b) In situ phase transformation and deformation of iron at high pressure and temperature. J Appl Phys 104:103510–103519

    Article  Google Scholar 

  • Miyagi L, Kanitpanyacharoen W, Kaercher P, Lee KKM, Wenk HR (2010) Slip systems in MgSiO3 post-perovskite: implications for D′′ anisotropy. Science 329:1639–1641

    Article  Google Scholar 

  • Miyajima N, Walte N (2009) Burgers vector determination in deformed perovskite and post-perovskite of CaIrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy 109:683–692

    Article  Google Scholar 

  • Miyajima N, Ohgushi K, Ichihara M, Yagi T (2006) Crystal morphology and dislocation microstructures of CaIrO3: a TEM study of an analogue of the MgSiO3 post-perovskite phase. Geophys Res Lett 33:L12302

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integration. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Nabarro FRN (1948) Deformation of crystals by the motion of single ions. In: Report of a conference on strength of solids, vol 75. The physical Society, London, pp 75–90

  • Navrotsky A, Ross N (1988) Study of the MgGeO3 polymorphs (ortho-pyroxene, clinopyroxene, and ilmenite structures) by calorimetry, spectroscopy and phase-equilibria. Am Miner 73:1355–1365

    Google Scholar 

  • Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Mineral 34:679–686

    Article  Google Scholar 

  • Nowacki A, Wookey J, Kendall J (2010) Deformation of the lowermost mantle from seismic anisotropy. Nature 467:1091–1094

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D′′ layer. Nature 430:445–448

    Article  Google Scholar 

  • Oganov AR, Brodholt JP, Price G (2001) Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth Planet Sci Lett 184:555–560

    Article  Google Scholar 

  • Oganov AR, Martonak R, Laio A, Raiteri P, Parrinello M (2005) Anisotropy of Earth’s D” layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438:1142–1144

    Article  Google Scholar 

  • Okada T, Yagi T, Niwa K, Kikegawa T (2010) Lattice-preferred orientations in post-perovskite-type MgGeO3 formed by transformations from different pre-phases. Phys Earth Planet Interiors 180:195–202

    Article  Google Scholar 

  • Panning M, Romanowicz B (2004) Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science 303:351–353

    Article  Google Scholar 

  • Panning M, Romanowicz B (2006) A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys J Int 167:361–379

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Popa NC, Balzar D (2002) An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J Appl Crystallogr 35:338–346

    Article  Google Scholar 

  • Santillán J, Shim S, Shen G, Prakapenka VB (2006) High-pressure phase transition in Mn2O3: application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys Res Lett 33:L15307

    Article  Google Scholar 

  • Shim S (2008) The post-perovskite transition. Annu Rev Earth Planet Sci 36:569–599

    Article  Google Scholar 

  • Shim S, Duffy TS, Jeanloz R, Shen G (2004) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys Res Lett 31:L10603

    Article  Google Scholar 

  • Singh AK (1993) The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys 73:4278–4286

    Article  Google Scholar 

  • Singh AK, Balasingh C, Mao HK, Hemley RJ, Shu J (1998) Analysis of lattice strains measured under nonhydrostatic pressure. J Appl Phys 83:7567–7575

    Article  Google Scholar 

  • Speziale S, Lonardelli I, Miyagi L, Pehl J, Tommaseo CE, Wenk HR (2006) Deformation experiments in the diamond-anvil cell: texture in copper to 30 GPa. J Phys Condens Matter 18:S1007–S1020

    Article  Google Scholar 

  • Stackhouse S, Brodholt JP (2007) The high-temperature elasticity of MgSiO3 post-perovskite. In: Hirose K et al (ed) Post-perovskite: the last mantle phase transition, AGU monograph, vol 174. pp 99–113

  • Stackhouse S, Brodholt JP, Wookey J, Kendall J, Price GD (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet Sci Lett 230:1–10

    Article  Google Scholar 

  • Tomé CN, Canova G (2000) Self-consistent modeling of heterogeneous plasticity. In: Kocks UF et al (ed) Texture and anisotropy: preferred orientations in polycrystals and their effect on material properties. Cambridge University Press, Cambridge, pp 466–510

  • Tsuchiya T, Tsuchiya J (2007) Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: Ab initio calculations. Phys Rev B 76:144119

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Article  Google Scholar 

  • Usui Y, Tsuchiya J, Tsuchiya T (2010) Elastic, vibrational, and thermodynamic properties of MgGeO3 postperovskite investigated by first principles simulation. J Geophys Res 115:B03201

    Article  Google Scholar 

  • Walte NP, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34:L08306

    Article  Google Scholar 

  • Walte NP, Heidelbach F, Miyajima N, Frost DJ, Rubie DC, Dobson DP (2009) Transformation textures in post-perovskite: understanding mantle flow in the D″ layer of the earth. Geophys Res Lett 36:L04302

    Article  Google Scholar 

  • Wenk HR, Lonardelli I, Pehl J, Devine JM, Prakapenka VB, Shen G, Mao HK (2004) In situ observation of texture development in olivine, ringwoodite, magnesiowustite and silicate perovskite at high pressure. Earth Planet Sci Lett 226:507–519

    Article  Google Scholar 

  • Wenk HR, Lonardelli I, Merkel S, Miyagi L, Pehl J, Speziale S, Tommaseo CE (2006) Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. J Phys Condens Matter 18:S933–S947

    Article  Google Scholar 

  • Wenk HR, Cottaar S, Tomé CN, McNamara AK, Romanowicz B (2011) Deformation in the lowermost mantle: from polycrystal plasticity to seismic anisotropy. Earth Planet Sci Lett 306:33–45

    Article  Google Scholar 

  • Wentzcovitch RM, Tsuchiya T, Tsuchiya J (2006) MgSiO3 postperovskite at D″ conditions. Proc Natl Acad Sci USA 103:543–546

    Article  Google Scholar 

  • Wookey J, Kendall J (2007) Seismic anisotropy of post-perovskite and the lowermost mantle. In: Hirose K et al (eds) Post-perovskite: the last mantle phase transition, AGU monograph, vol 174. pp 171–189

  • Yamazaki D, Yoshino T, Ohfuji H, Ando J, Yoneda A (2006) Origin of seismic anisotropy in the D’’ layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252:372–378

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. We would like to thank T. S. Duffy at Princeton University for kindly providing the starting material. L.M. acknowledges support of the Bateman Fellowship at Yale University. S.S. acknowledges support from NSF, CDAC, and UC Berkeley’s laboratory fee grant. H.R.W acknowledges support from CDAC and NSF Grant No. EAR0836402 and EAR0757608. We appreciate the help of Y. Meng at HPCAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lowell Miyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyagi, L., Kanitpanyacharoen, W., Stackhouse, S. et al. The enigma of post-perovskite anisotropy: deformation versus transformation textures. Phys Chem Minerals 38, 665–678 (2011). https://doi.org/10.1007/s00269-011-0439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0439-y

Keywords

Navigation