Skip to main content
Log in

Raman spectra and X-ray diffraction of tuite at various temperatures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-temperature Raman spectra and thermal expansion of tuite, γ-Ca3(PO4)2, have been investigated. The effect of temperature on the Raman spectra of synthetic tuite was studied in the range from 80 to 973 K at atmospheric pressure. The Raman frequencies of all observed bands for tuite continuously decrease with increasing temperature. The quantitative analysis of temperature dependence of Raman bands indicates that the changes in Raman frequencies for stretching modes (ν3 and ν1) are faster than those for bending modes (ν4 and ν2) of PO4 in the present temperature range, which may be attributed to the structural evolution of PO4 tetrahedron in tuite at high temperature. The thermal expansion of tuite was examined by means of in situ X-ray diffraction measurements in the temperature range from 298 to 923 K. Unit cell parameters and volume were analyzed, and the thermal expansion coefficients were obtained as 3.67 (3), 1.18 (1), and 1.32 (3) × 10−5 K−1 for V, a, and c, respectively. Thermal expansion of tuite shows an axial anisotropy with a larger expansion coefficient along the c-axis. The isothermal and isobaric mode Grüneisen parameters and intrinsic anharmonicity of tuite have been calculated by using present high-temperature Raman spectra and thermal expansion coefficient combined with previous results of the isothermal bulk modulus and high-pressure Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahams SC, Geller S (1958) Refinement of the structure of a grossularite garnet. Acta Cryst 11:437–441

    Article  Google Scholar 

  • Bih H, Bih L, Manoun B, Azdouz M, Benmokhtar S, Lazor P (2009) Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature. J Mol Struct 936:147–155

    Article  Google Scholar 

  • Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich R, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Miner 11:1023–1035

    Google Scholar 

  • Buchwald VF (1984) Phosphate minerals in meteorites and lunar rocks. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer, New York, pp 199–214

    Google Scholar 

  • Chaplin TD, Ross NL, Reynard B (2000) A high-temperature and high-pressure Raman spectroscopic study of CaGeO3 garnet. Phy Chem Miner 27:213–219

    Article  Google Scholar 

  • Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phy Chem Miner 28:219–224

    Article  Google Scholar 

  • Díaz-Hernández J, Aguirre-Zamalloa G, López-Echarri A, Ruiz-Larrea I, Breczewski T, Tello MJ (1997) The phase transition sequence in tetramethylammonium cadmium chloride (TMCC): [N(CH3)4] CdCl3. J Phys: Condens Matter 9:3399–3415

    Article  Google Scholar 

  • Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Cryst 27:892–900

    Article  Google Scholar 

  • Fix W, Heymann H, Heinke R (1969) Subsolidus relations in the system 2CaO·SiO2–3CaO·P2O5. J Am Ceram Soc 52:346–347

    Article  Google Scholar 

  • Gillet P, Guyot F, Malezieux JM (1989) High-pressure, high-temperature Raman spectroscopy of Ca2GeO4 (olivine form): some insights on anharmonicity. Phys Earth Planet Inter 58:141–154

    Article  Google Scholar 

  • Gillet R, Fiquet G, Maldzieux JM, Geiger C (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur J Miner 4:651–664

    Google Scholar 

  • Gillet P, Daniel I, Guyot F (1997) Anharmonic properties of Mg2SiO4 forsterite measured from the volume dependence of the Raman spectrum. Eur J Miner 9:255–262

    Google Scholar 

  • Griffin W, Åmli R, Heier KS (1972) Whitlockite and apatite from lunar rock 14310 and from ÖdegÅrden, Norway. Earth Planet Sci Lett 15:53–68

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS: general structure analysis system. Los Alamos National Laboratory report no. LAUR 86–748. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Levien L, Prewitt C (1981) High-pressure structural study of diopside. Am Miner 66:315–323

    Google Scholar 

  • Lin CC, Liu LG, Mernagh TP, Irifune T (2000) Raman spectroscopic study of hydroxyl-clinohumite at various pressures and temperatures. Phy Chem Miner 27:320–331

    Article  Google Scholar 

  • Liu LG, Lin CC, Yung YJ, Mernagh TP, Irifune T (2009) Raman spectroscopic study of K-lingunite at various pressures and temperatures. Phys Chem Miner 36:143–149

    Article  Google Scholar 

  • Mammone JF, Sharma SK (1979) Pressure and temperature dependence of the Raman spectra of rutile-structure oxides. Carnegie Institution Year Book, Washington, pp 369–373

    Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Miner 70:590–600

    Google Scholar 

  • Murayama JK, Nakai S, Kato M, Kumazawa M (1986) A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance. Phys Earth Planet Inter 44:293–303

    Article  Google Scholar 

  • Nash WP (1984) Phosphate minerals in terrestrial igneous and metamorphic rocks. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer, New York, pp 215–241

    Google Scholar 

  • Nurse RW, Welch JH, Gutt W (1959) High-temperature phase equilibria in the system dicalcium silicate-tricalcium phosphate. J Chem Soc 1077–1083

    Article  Google Scholar 

  • Okada T, Narita T, Nagai T, Yamanaka T (2008) Comparative Raman spectroscopic study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures. Am Miner 93:39–47

    Article  Google Scholar 

  • Richet R, Mysen BO, Ingrin J (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys Chem Miner 25:401–414

    Article  Google Scholar 

  • Roux P, Lowor D, Bonel G (1978) Sur une novella forme cristallite du phosphate tricalcique. C R Acad Paris: Ser C 286:549–551

    Google Scholar 

  • Sharma SK, Cooney TF, Wang S (1992) Effect of high P and high T on olivines: a Raman spectral study. In: Singh AK (ed) Recent trends in high pressure research. Oxford & IBH, New Delhi, pp 614–619

    Google Scholar 

  • Sugiyama K, Tokonami M (1987) Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO4)2: a host to accommodate large lithophile elements in the Earth’s mantle. Phys Chem Miner 15:125–130

    Article  Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchroton X-ray data from Al2O3. J Appl Cryst 20:79–83

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI: a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  • Trombe JC (1973) Contribution à l’étude de la décomposition et de la réactivité de certaines apatites hydroxylées et carbonatées. Ann Chim 8:251–269

    Google Scholar 

  • Welch JH, Gutt WJ (1961) High-temperature studies of the system calcium oxide-phosphorus pentoxide. J Chem Soc 4442–4444

    Article  Google Scholar 

  • Williams Q, Knittle E (1996) Infrared and Raman spectra of Ca5(PO4)3F2-fluorapatite at high pressures: compression-induced changes in phosphates site and Davydov splittings. J Phys Chem Solids 57:417–422

    Article  Google Scholar 

  • Xie X, Minitti ME, Chen M, Mao HK, Wang D, Shu J, Fei Y (2003) Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur J Miner 15:1001–1005

    Article  Google Scholar 

  • Yamanaka T, Ishii M (1986) Raman scattering and lattice vibrations of Ni2SiO4 spinel at elevated temperature. Phys Chem Miner 13:156–160

    Article  Google Scholar 

  • Zhai S, Liu X, Shieh S, Zhang L, Ito E (2009) Equation of state of γ-tricalcium phosphate, γ-Ca3(PO4)2, to lower mantle pressures. Am Miner 94:1388–1391

    Article  Google Scholar 

  • Zhai S, Kanzaki M, Katsura T, Ito E (2010a) Synthesis and characterization of strontium-calcium phosphate γ-Ca3−xSrx(PO4)2 (0 ≤ x ≤2). Mater Chem Phys 120:348–350

    Article  Google Scholar 

  • Zhai S, Wu X, Ito E (2010b) High-pressure Raman spectra of tuite, γ-Ca3(PO4)2. J Raman Spectrosc 41:1011–1013

    Article  Google Scholar 

Download references

Acknowledgments

The X-ray diffraction measurements were conducted at the beamline 4B9A of BSRF with the technical support from Q. Cai. We are grateful to T. Gu and F. Zhu for the XRD experimental helps. We thank Professor M. Matsui for his editorial handling and comments. Critical comments and suggestion from two anonymous reviewers are helpful to improve the manuscript. This work was financially supported by the National Natural Science Foundation of China with Grant Nos. 40973045 and 41072027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangmeng Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, S., Xue, W., Lin, CC. et al. Raman spectra and X-ray diffraction of tuite at various temperatures. Phys Chem Minerals 38, 639–646 (2011). https://doi.org/10.1007/s00269-011-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0436-1

Keywords

Navigation