Skip to main content

Advertisement

Log in

Elasticity of CaIrO3 with perovskite and post-perovskite structure

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Compression behaviors of CaIrO3 with perovskite (Pv) and post-perovskite (pPv) structures have been investigated up to 31.0(1.0) and 35.3(1) GPa at room temperature, respectively, in a diamond-anvil cell with hydrostatic pressure media. CaIrO3 Pv and pPv phases were compressed with the axial compressibility of β a > β c > β b and β b > β a > β c, respectively and no phase transition was observed in both phases up to the highest pressure in the present study. The order of axial compressibility for pPv phase is consistent with the crystallographic consideration for layer structured materials and previous experimental results. On the other hand, Pv phase shows anomalous compression behavior in b axis, which exhibit constant or slightly expanded above 13 GPa, although the applied pressure remained hydrostatic. Volume difference between Pv and pPv phases was gradually decreased with increasing pressure and this is consistent with the results of theoretical study based on the ab initio calculation. Present results, combined with theoretical study, suggest that these complicate compression behaviors in CaIrO3 under high pressure might be caused by the partially filled electron of Ir4+. Special attention must be paid in case of using CaIrO3 as analog materials to MgSiO3, although CaIrO3 exhibits interesting physical properties under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus–volume relationship for oxides. J Geophys Res 75:3494–3499

    Article  Google Scholar 

  • Ballaran TB, Trønnes RG, Frost DJ (2007) Equation of state of CaIrO3 perovskite and post-perovskite phases. Am Miner 92:1760–1763

    Article  Google Scholar 

  • Chai M, Brown M (1996) Effects of static non-hydrostatic stress on the R lines of ruby single crystals. Geophys Res Lett 24:3539–3542

    Article  Google Scholar 

  • Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, Housermann D (1998) P–V–T equation of state of MgSiO3 perovskite. Phys Earth Planet Int 105:21–31

    Article  Google Scholar 

  • Fiquet G, Dewaele A, Andrault D, Kunz M, Bihan TL (2000) Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys Res Lett 27:21–24

    Article  Google Scholar 

  • Fujihisa H (1999) An X-ray powder pattern analysis program for imaging plate. Rev High Press Sci 9:65–70

    Google Scholar 

  • Guignot N, Andrault D, Marard G, Bolfan-Casanova N, Mezouar M (2007) Thermoelastic properties of post-perovskite phase MgSiO3 determined experimentally at core-mantle boundary P–T conditions. Earth Planet Sci Lett 256:162–168

    Article  Google Scholar 

  • Hirose K, Fujita Y (2005) Clapeyron slope of the post-perovskite phase transition in CaIrO3. Geophys Res Lett 32:L13313

    Article  Google Scholar 

  • Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005) Stability and equation of state of MgGeO3 post-perovskite. Am Mineral 90:262–265

    Article  Google Scholar 

  • Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 post-perovskite phase in the earth’s lowermost mantle. Nature 430:442–445

    Article  Google Scholar 

  • Kojitani H, Furukawa A, Akaogi M (2007a) Thermochemistry and high-pressure equilibria of the post-perovskite phase transition in CaIrO3. Am Mineral 92:229–232

    Article  Google Scholar 

  • Kojitani H, Shirako Y, Akaogi M (2007b) Post-perovskite phase transition in CaRuO3. Phys Earth Planet Lett 165:127–134

    Article  Google Scholar 

  • Kubo A, Kiefer B, Shen G, Prakapenka VB, Cava RJ, Duffy TS (2006) Stability and equation of state of the post-perovskite phase in MgGeO3 to 2 Mbar. Geophys Res Lett 33:L12S12

    Google Scholar 

  • Kubo A, Kiefer B, Shim S-H, Shen G, Prakapenka RJ, Duffy TS (2008) Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar. Am Mineral 93:965–976

    Article  Google Scholar 

  • Kung J, Angel RJ, Ross NL (2001) Elasticity of CaSnO3 perovskite. Phys Chem Miner 28:35–43

    Article  Google Scholar 

  • Lao I, Adler P, Grzechnik A, Syassen K, Schwarz U, Hanfland M, Rozenberg GKh, Gorodetsky P, Pasternak MP (2001) Pressure-induced quenching of the Jahn–Teller distortion and insulator-to-metal transition in LaMnO3. Phys Rev Lett 87:125501

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Martin CD, Chapman KW, Chupas PJ, Prakapenka V, Lee PL, Shastri SD, Parise JB (2007a) Compression, thermal expansion, structure, and instability of CaIrO3, the structure model of MgSiO3 post-perovskite. Am Mineral 92:1048–1053

    Article  Google Scholar 

  • Martin CD, Smith RI, Marshall WG, Parise JB (2007b) High-pressure structure and bonding in CaIrO3: the structure model of MgSiO3 post-perovskite investigated with time-of-flight neutron powder diffraction. Am Mineral 92:1912–1918

    Article  Google Scholar 

  • McDaniel CL, Schneider SJ (1972) Phase relations in the CaO–IrO2–Ir system in air. J Solid State Chem 4:275–280

    Article  Google Scholar 

  • Min L, Manghnani MH (1979) Isothermal compression of TiO2(rutile) under hydrostatic pressure to 106 kba. J Geophys Res Lett 84:4777–4779

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Miner 34:679–686

    Article  Google Scholar 

  • Ohgushi K, Gotou H, Yagi T, Kiuchi Y, Sakai F, Ueda U (2006) Metal-insulator transition in Ca1−xNaxIrO3 with post-perovskite structure. Phys Rev B 74:241104

    Article  Google Scholar 

  • Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Gotou H, Ueda Y, Yagi T (2007) CaPtO3 as a novel post-perovskite oxide. Phys Chem Miner 35:189–195

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2006) Equation of state of CaIrO3-type MgSiO3 up to 144 GPa. Am Mineral 91:475–478

    Article  Google Scholar 

  • Piermarini GJ, Block S, Barnett JD (1973) Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys 44:5377–5382

    Article  Google Scholar 

  • Ross NL, Angel RJ (1999) Compression of CaTiO3 and CaGeO3 perovskite. Am Mineral 84:277–281

    Google Scholar 

  • Ross NL, Chaplin TD (2003) Compressibility of CaZrO3 perovskite: Comparison with Ca-oxide perovskites. J Solid State Chem 172:123–136

    Article  Google Scholar 

  • Ross NL, Hazen RM (1990) High-pressure crystal chemistry of MgSiO3 prevskite. Phys Chem Miner 17:228–237

    Article  Google Scholar 

  • Ross NL, Shu JF, Hazen RM (1990) High-pressure crystal chemistry of stishovite. Am Mineral 75:739–747

    Google Scholar 

  • Runge CE, Kubo A, Kiefer B, Meng Y, Prakapenka VB, Shen G, Cava RJ, Duffy TS (2006) Equation of state of MgGeO3 perovskite to 65 GPa: comparison with the post-perovskite phase. Phys Chem Miner 33:699–709

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Cryst B 25:925–945

    Article  Google Scholar 

  • Shieh SR, Duffy TS, Kubo A, Shen G, Prakapenka VB, Sata N, Ohishi Y (2006) Equation of state of the postpervskite phase synthesized from a natural (Mg, Fe)SiO3 orthopyroxene. Proc Natl Acad Sci USA 103:3039–3043

    Article  Google Scholar 

  • Shim S-H, Duffy T, Shen G (2000) The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J Geophys Res 105:25955–25968

    Article  Google Scholar 

  • Sugahara M, Yoshiasa A, Komatsu Y, Yamanaka T, Bolfan-Casanova N, Nakatsuka A, Sasaki S, Tanaka M (2006) Reinvestigation of the MgSiO3 perovskite structure at high pressure. Am Mineral 91:533–536

    Article  Google Scholar 

  • Takemura K (2001) Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques. J Appl Phys 89:662–668

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2006) High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. Phys Chem Miner 32:721–725

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J (2007) Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: ab initio calculations. Phys Rev B 76:1–144119

    Google Scholar 

  • Vanpeteghem CB, Zhao J, Angel RJ, Ross NL, Bolfan-Casanova N (2006) Crystal structure and equation of state of MgSiO3 perovskite. Geophys Res Lett 33:L03306. doi:1029/2005GL024955

  • Walte N, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34. doi:10.1029/2007GL029407

  • Yagi T, Yusa H, Yamakata M (1996) An apparatus to load gaseous materials to the diamond-anvil cell. Rev Sci Inst 67:2981

    Article  Google Scholar 

  • Yagi T, Okabe K, Nnishiyama N, Kubo A, Kikegawa T (2004) Complicated effects of aluminium on the compressibility of silicate perovskite. Phys Earth Planet Int 143–144:81–91

    Article  Google Scholar 

  • Yagi T, Iida E, Hirai H, Miyajima N, Kikegawa T, Bunno M (2007) High-pressure behavior of a SiO2 clathrate observed by using various pressure media. Phys Rev B 75:174115

    Article  Google Scholar 

  • Yamazaki D, Yoshino T, Ohfuji H, Ando J, Yoneda A (2006) Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252:372–378

    Article  Google Scholar 

  • Zhao J, Ross NL, Angel RJ (2004) Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction. Phys Chem Miner 31:299–305

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank T. Okada, A. Sano-Furukawa, M. Hasegawa and N. Funamori for their useful discussion. We also acknowledge the technical support of H. Gotou for high pressure synthesis and Y. Kiuchi for SEM–EDS operation. We would like to thank two anonymous reviewers for their improvement in our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Niwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niwa, K., Yagi, T. & Ohgushi, K. Elasticity of CaIrO3 with perovskite and post-perovskite structure. Phys Chem Minerals 38, 21–31 (2011). https://doi.org/10.1007/s00269-010-0378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0378-z

Keywords

Navigation