Skip to main content
Log in

Magnetic and nuclear structure and thermal expansion of orthorhombic and monoclinic polymorphs of CoGeO3 pyroxene

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

CoGeO3 was synthesized at 1,273 and 1,448 K using ceramic sintering techniques in the monoclinic and orthorhombic modification, respectively. The two compounds were analysed by magnetic susceptibility measurements and neutron diffraction in order to study magnetic ordering and spin structures at low temperature. The monoclinic form of CoGeO3 has C2/c symmetry and orders magnetically below 36 K with a small negative paramagnetic Curie temperature θ P = −4.6 (2) K. The magnetic structure can be described with k = (1, 0, 0) in the magnetic space group C2′/c′ having a ferromagnetic spin arrangement within the chains of M1 sites, but a dominating antiferromagnetic coupling between the chains. At the M1 sites the magnetic spins are aligned within the a–c plane forming an angle of 120° with the +a-axis and they are not parallel to the spins at M2. Here spins are also ferromagnetically coupled within, but antiferromagnetically coupled between the M1/M2 site bands. The orthorhombic phase of CoGeO3 displays Pbca symmetry and transforms to an antiferromagnetically ordered state [θ P = −18.6(2) K] below 33 K. The magnetic spin structure can be described with k = (0, 0, 0) in space group Pbca′ and it is similar to the one of the C2/c phase except that it is non-collinear in nature, i.e. there are components of the magnetic moment along all three crystallographic axes. Small magneto-elastic coupling is observed in the orthorhombic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The neutron diffraction pattern of Wiedenmann et al. (1986) probably was taken with λ ≈ 1.24 Å instead of 2.48 Å given in the text. With the later wavelength the Bragg peaks displayed in the Figure at higher angles would not be accessible.

References

  • Akimoto S-I, Katsura T, Syono Y, Fujisawa H, Komada E (1965) Polymorphic transition of pyroxenes FeSiO3 and CoSiO3 at high pressures and temperatures. J Geophys Res 70(29):5269–5278

    Article  Google Scholar 

  • Becker UW, Felsche J (1987) Phases and structural relations of the rare earth germanates RE2Ge2O7, RE = La–Lu. J Less Common Metals 128:269–280

    Article  Google Scholar 

  • Bertaut EF (1968) Representation analysis of magnetic structures. Acta Crystallogr A24:217–231

    Article  Google Scholar 

  • Blundell SJ, Steer CA, Pratt FL, Marshall IM, Hayes W, Ward RCC (2003) Detection of magnetic order in the S = 1 chain compound LiVGe2O6 using implanted spin-polarized muons. Phys Rev B67:224411 (4 pages)

    Article  Google Scholar 

  • Cagliotti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum 3:223–228

    Article  Google Scholar 

  • Cámara F, Nestola F, Angel RJ, Ohasi H (2009) Spontaneous strain variation through the low-temperature displacive phase transition in LiGaSi2O6. Eur J Mineral 21:599–614

    Article  Google Scholar 

  • Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50

    Google Scholar 

  • Fang JA, Townes WD (1969) The crystal structure of manganese metagermanate, MnGeO3. Z Krist 130:139–147

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. Am Geophys Union, pp 29–44

  • Goodenough JB (1963) Magnetism and the chemical bond. Wiley Interscience, New York

    Google Scholar 

  • Greenblatt M, Hornreich RM, Sharon B (1974) Evidence for a spin-reorientation type phase transition in FeGeO3. Solid State Comm 14:1177–1181

    Article  Google Scholar 

  • Grodzicki M, Redhammer GJ, Reissner M, Steiner W, Amthauer G (2009) Electronic and magnetic structure of pyroxenes I. Hedenbergite. Phys Chem Min 36 (http://dx.doi.org/10.1007/s00269-009-0306-2)

  • Gurewitz E, Shaked H (1972) Classification of magnetic structures in some orthorhombic space groups. Acta Crystallogr A28:280–284

    Article  Google Scholar 

  • Herpin P, Whuler A, Boncher B, Sougi M (1971) Étude cristallographique et magnétique de MnGeO3. Phys Stat Sol B 44:71–84

    Article  Google Scholar 

  • Hugh-Jones D (1997) Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes. Am Mineral 82:689–696

    Article  Google Scholar 

  • Hugh-Jones DA, Angel RJ (1997) Effect of Ca2+ and Fe2+ on the equation of state of MgSiO3 orthopyroxene. J Geophys Res 102:12333–12340

    Article  Google Scholar 

  • Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high pressure C2/c ferrosilite and crystal chemistry of high pressure C2/c pyroxenes. Am Mineral 79:1032–1041

    Google Scholar 

  • Jodlauk S, Becker P, Mydosh JA, Khomskii DI, Lorenz T, Streltsov SV, Hezel DC, Bohaty L (2007) Pyoxenes: a new class of multiferroics. J Phys Cond Matters 19(43):432201

    Article  Google Scholar 

  • Knight KS (1996) A neutron powder diffraction determination of the thermal expansion tensor of crocoite (PbCrO4) between 60 K and 290 K. Mineral Mag 60:963–972

    Article  Google Scholar 

  • Knight KS, Stretton IC, Schonfield PF (1999) Temperature evolution between 50 K and 320 K of the thermal expansion tensor of gypsum derived from neutron powder diffraction data. Phys Chem Min 26:477–483

    Article  Google Scholar 

  • Litvin DB (2008) Tables of crystallographic properties of magnetic space groups. Acta Crystallogr A64:419–424

    Article  Google Scholar 

  • Lueken H (1999) Magnetochemie. Eine Einführung in Theorie und Praxis. Teubner Studienbücher, Chemie. Teubner Verlag, Stuttgart, pp 509

  • Nestola F, Gatta DG, Boffa Ballaran T (2006) The effect of Ca substitution on the elastic and structural behaviour of orthoenstatite. Am Mineral 91:809–815

    Article  Google Scholar 

  • Nestola F, Redhammer GJ, Pamato MG, Secco L, Dal Negro A (2009) High-pressure phase transformation in LiFeGe2O6 pyroxene. Am Mineral 94:616–621

    Article  Google Scholar 

  • Ohashi Y, Burnham CW (1973) Clinopyroxene lattice deformation: the roles of chemical substitution and temperature. Am Mineral 58:843–849

    Google Scholar 

  • Ozima M (1983) Structure of orthopyroxene-type and clinopyroxene-type magnesium germanium oxide MgGeO3. Acta Crystallogr C39:1169–1172

    Google Scholar 

  • Peacor D (1968) The crystal structure of CoGeO3. Z Krist 126:299–306

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2004) Structural changes upon the temperature dependent C2/c → P21/c phase transition in LiMe3+Si2O6 clinopyroxenes, Me = Cr, Ga, Fe, V and Sc. Z Krist 219(10):585–605

    Google Scholar 

  • Redhammer GJ, Roth G, Paulus W, André G, Lottermoser W, Amthauer G, Treutmann W, Koppelhuber-Bitschnau B (2001) Crystal and magnetic structure of Li-Aegirine LiFe3+Si2O6: a temperature dependent study. Phys Chem Min 28:337–346

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Treutmann W, Paulus W, André G, Pietzonka C, Amthauer G (2008) Magnetic ordering and spin structure in Ca-bearing clinopyroxenes CaM2+(Si, Ge)2O6, M = Fe, Ni, Co, Mn. J Solid State Chem 181:3163–3176

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Treutmann W, Hoelzel M, Paulus W, André G, Pietzonka C, Amthauer G (2009a) The magnetic structure of clinopyroxene-type LiFeGe2O6 and revised data on multiferroic LiFeSi2O6. J Solid State Chem 182:2374–2384

    Article  Google Scholar 

  • Redhammer GJ, Pachler A, Hoelzel M, Tippelt G, Roth G, Amthauer G (2009b) Nuclear and magnetic structure of NaFeGe2O6 in comparison to NaFeSi2O6 (aegirine) (in prep)

  • Rodríguez-Carvajal J (2001) Recent developments of the program. In: Commission on powder diffraction (IUCr). Newsletter 26:12–19. Available at http://journals.iucr.org/iucr-top/comm/cpd/Newsletters/

    Google Scholar 

  • Sasaki S, Takéuchi Y (1982) Electron-density distribution of three orthopyroxenes, Mg2Si2O6, Co2Si2O6, and Fe2Si2O6. Z Krist 158:279–297

    Google Scholar 

  • Sawaoka A, Miyahara S (1964) Magnetic properties of some synthetic pyroxenes. J Phys Soc Jpn 19:1254

    Article  Google Scholar 

  • Sawaoka A, Miyahara S, Akimoto SI (1968) Magnetic properties of several metasilicates and metagermanates with pyroxene structure. J Phys Soc Jpn 25:1253–1257

    Article  Google Scholar 

  • Schlenker JL, Gibbs GV, Boisen MB Jr (1975) Thermal expansion coefficients for monoclinic crystals: a phenomenological approach. Am Mineral 60:828–833

    Google Scholar 

  • Schonfield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Min 31:606–624

    Article  Google Scholar 

  • Shamir N, Shaked H (1975) The magnetic structure of CoGeO3. Phys Stat Sol (a) 30:315–322

    Article  Google Scholar 

  • Streltsov SV, Khomskii DI (2008) Electronic structure and magnetic properties of pyroxenes (Li,Na)TM(Si,Ge)2O6: low-dimensional magnets with 90° bonds. Phys Rev B77:064405 (11 p)

    Article  Google Scholar 

  • Tauber A, Kohn JA (1965) Orthopyroxene and clinopyroxene polymorphs of CoGeO3. Am Mineral 50:13–21

    Google Scholar 

  • Thompson JB (1970) Geometrical possibilities for amphibole structures: model biopyriboles. Am Mineral 55:292–293

    Google Scholar 

  • Wiedenmann A, Regnard J-R, Fillion G, Hafner SS (1986) Magnetic properties and magnetic ordering of the orthopyroxenes FexMg1–xSiO3. J Phys C Solid State Phys 19:3683–3695

    Article  Google Scholar 

  • Wildner M (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Z Krist 202:51–70

    Article  Google Scholar 

  • Yamanaka T, Hirano M, Takéuchi Y (1985) A high temperature transition in MgGeO3 from clinopyroxene (C2/c) type to orthopyroxene (Pbca) type. Am Mineral 70:365–374

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung, FWF, Vienna, under grants number R33-N10 and P19762/N10. Neutron diffraction experiments have been supported by the European Commission under the 7th Framework Programme through the “Research Infrastructures” action of the “Capacities” Programme, Contract No: CP_CSA_Infra-2008-1.1.1 Number 226507-NIMI3. Fernando Cámara and Fabrizio Nestola are thanked for their careful and helpful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Josef Redhammer.

Electronic supplementary material

The 53 supplementary CIF files are unfortunately not in the Publisher's archive anymore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redhammer, G.J., Senyshyn, A., Tippelt, G. et al. Magnetic and nuclear structure and thermal expansion of orthorhombic and monoclinic polymorphs of CoGeO3 pyroxene. Phys Chem Minerals 37, 311–332 (2010). https://doi.org/10.1007/s00269-009-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0335-x

Keywords

Navigation