Skip to main content

Advertisement

Log in

Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Partitioning of oxygen and silicon between molten iron and (Mg,Fe)SiO3 perovskite was investigated by a combination of laser-heated diamond-anvil cell (LHDAC) and analytical transmission electron microscope (TEM) to 146 GPa and 3,500 K. The chemical compositions of co-existing quenched molten iron and perovskite were determined quantitatively with energy-dispersive X-ray spectrometry (EDS) and electron energy loss spectroscopy (EELS). The results demonstrate that the quenched liquid iron in contact with perovskite contained substantial amounts of oxygen and silicon at such high pressure and temperature (P–T). The chemical equilibrium between perovskite, ferropericlase, and molten iron at the P–T conditions of the core–mantle boundary (CMB) was calculated in Mg–Fe–Si–O system from these experimental results and previous data on partitioning of oxygen between molten iron and ferropericlase. We found that molten iron should include oxygen and silicon more than required to account for the core density deficit (<10%) when co-existing with both perovskite and ferropericlase at the CMB. This suggests that the very bottom of the mantle may consist of either one of perovskite or ferropericlase. Alternatively, it is also possible that the bulk outer core liquid is not in direct contact with the mantle. Seismological observations of a small P-wave velocity reduction in the topmost core suggest the presence of chemically-distinct buoyant liquid layer. Such layer physically separates the mantle from the bulk outer core liquid, hindering the chemical reaction between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751. doi:10.1063/1.1778482

    Article  Google Scholar 

  • Anderson OL, Isaak DG (2002) Another look at the core density deficit of Earth’s outer core. Phys Earth Planet Inter 131:19–27. doi:10.1016/S0031-9201(02)00017-1

    Article  Google Scholar 

  • Asahara Y, Frost DJ, Rubie DC (2007) Partitioning of FeO between magnesiowüstite and liquid iron at high pressures and temperatures: implications for the composition of the Earth’s outer core. Earth Planet Sci Lett 257:435–449. doi:10.1016/j.epsl.2007.03.006

    Article  Google Scholar 

  • Birch F (1952) Elasticity and constitution of the Earth’s interior. J Geophys Res 57:227–286. doi:10.1029/JZ057i002p00227

    Article  Google Scholar 

  • Birch F (1964) Density and composition of mantle and core. J Geophys Res 69:4377–4388. doi:10.1029/JZ069i020p04377

    Article  Google Scholar 

  • Buffett B, Garnero EJ, Jeanloz R (2000) Sediments at the top of Earth’s core. Science 290:1338–1342. doi:10.1126/science.290.5495.1338

    Article  Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Google Scholar 

  • Fabrichnaya OB (1995) Thermodynamic data for phases in the FeO–MgO–SiO2 system and phase relations in the mantle transition zone. Phys Chem Miner 22:323–332. doi:10.1007/BF00202773

    Article  Google Scholar 

  • Fei Y, Zhang L, Corgne A, Watson H, Ricolleau A, Meng Y, Prakapenka V (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys Res Lett 32:L17307. doi:10.1029/2007GL030712

    Article  Google Scholar 

  • Fujino K, Miyajima N, Yagi T, Kondo T, Funamori N (1998) Analytical electron microscopy of the garnet-perovskite transformation in a laser-heated diamond anvil cell. In: Manghnani MH, Yagi T (eds) Properties of earth and planetary materials at high pressure and temperature, Geophysical Monograph Series, vol 101. American Geophysical Union, Washington, DC, pp 409–417

  • Gessmann CK, Wood BJ, Rubie DC, Kilburn MR (2001) Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth’s core. Earth Planet Sci Lett 184:367–376. doi:10.1016/S0012-821X(00)00325-3

    Article  Google Scholar 

  • Helffrich G, Kaneshima S (2004) Seismological constraints on core composition from Fe–O–S liquid immiscibility. Science 306:2239–2242. doi:10.1126/science.1101109

    Article  Google Scholar 

  • Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434:882–886. doi:10.1038/nature03472

    Article  Google Scholar 

  • Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J Geophys Res 107:2078. doi:10.1029/2001JB000597

    Article  Google Scholar 

  • Ito E, Morooka K, Ujike O, Katsura T (1995) Reactions between molten iron and silicate melts at high pressure: implications for the chemical evolution of Earth’s core. J Geophys Res 100:5901–5910. doi:10.1029/94JB02645

    Article  Google Scholar 

  • Kawazoe T, Ohtani E (2006) Reaction between liquid iron and (Mg, Fe)SiO3-perovskite and solubilities of Si and O in molten iron at 27 GPa. Phys Chem Miner 33:227–234. doi:10.1007/s00269-006-0071-4

    Article  Google Scholar 

  • Kesson SE, Fitz Gerald JD, O’Neill C, Shelley JMG (2002) Partitioning of iron between magnesian silicate perovskite and magnesiowüstite at about 1 Mbar. Phys Earth Planet Inter 131:295–310. doi:10.1016/S0031-9201(02)00063-8

    Article  Google Scholar 

  • Knittle E, Jeanloz R (1991) Earth’s core–mantle boundary: results of experiments at high pressures and temperatures. Science 251:1438–1443. doi:10.1126/science.251.5000.1438

    Article  Google Scholar 

  • Kobayashi Y, Kondo T, Ohtani E, Hirao N, Miyajima N, Yagi T, Nagase T, Kikegawa T (2005) Fe–Mg partitioning between (Mg,Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys Res Lett 32:L19301. doi:10.1029/2005GL023257

    Article  Google Scholar 

  • Lay T, Young CJ (1990) The stably-stratified outermost core revisited. Geophys Res Lett 17:2001–2004. doi:10.1029/GL017i011p02001

    Article  Google Scholar 

  • Lay T, Hernlund J, Garnero EJ, Thorne MS (2006) A post-perovskite lens and D′′ heat flux beneath the central pacific. Science 314:1272–1276. doi:10.1126/science.1133280

    Article  Google Scholar 

  • Li J, Fei Y (2003) Experimental constraints on core composition. In: Carlson RW (ed) Treatise on geochemistry, the mantle and core, vol 2. Elsevier, Amsterdam, pp 521–546

    Google Scholar 

  • Lin JF, Sturhahn W, Zhao J, Shen G, Mao HK, Hemley RJ (2004) Absolute temperature measurement in a laser-heated diamond anvil cell. Geophys Res Lett 31:L14611. doi:10.1029/2004GL020599

    Article  Google Scholar 

  • Lister JR, Buffett B (1998) Stratification of the outer core at the core–mantle boundary. Phys Earth Planet Inter 105:5–19. doi:10.1016/S0031-9201(97)00082-4

    Article  Google Scholar 

  • Monnereau M, Yuen DA (2007) How can the double crossings of the post-perovskite transition constrain the heat-flux from the core? Eos Trans AGU 88(52) Fall Meet Suppl Abstract U41B-0422

  • Ozawa H, Hirose K, Mitome M, Bando Y, Sata N, Ohishi Y (2008) Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. Geophys Res Lett 35:L05308. doi:10.1029/2007GL032648

    Article  Google Scholar 

  • Poirier JP (1994) Light elements in the Earth’s outer core: a critical review. Phys Earth Planet Inter 85:319–337. doi:10.1016/0031-9201(94)90120-1

    Article  Google Scholar 

  • Rubie DC, Gessmann CK, Frost DJ (2004) Partitioning of oxygen during core formation on the earth and mars. Nature 429:58–61. doi:10.1038/nature02473

    Article  Google Scholar 

  • Sakai T, Kondo T, Ohtani E, Terasaki H, Endo N, Kuba T, Suzuki T, Kikegawa T (2006) Interaction between iron and post-perovskite at core–mantle boundary and core signature in plume source region. Geophys Res Lett 33:L15317. doi:10.1029/2006GL026868

    Article  Google Scholar 

  • Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, Sata N, Ohishi Y (2008) Partitioning of iron between perovskite/post-perovskite and ferropericlase in the lower mantle. J Geophys Res 113:B11204. doi:10.1029/2008JB005730

    Article  Google Scholar 

  • Souriau A, Poupinet G (1991) A study of the outermost liquid core using differential travel times of the SKS, SKKS, and S3KS phases. Phys Earth Planet Inter 68:183–199. doi:10.1016/0031-9201(91)90017-C

    Article  Google Scholar 

  • Speziale S, Zha C, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equation of state. J Geophys Res 106:515–528. doi:10.1029/2000JB900318

    Article  Google Scholar 

  • Takafuji N, Hirose K, Ono S, Xu F, Mitome M, Bando Y (2004) Segregation of core melts by permeable flow in the lower mantle. Earth Planet Sci Lett 224:249–257. doi:10.1016/j.epsl.2004.05.016

    Article  Google Scholar 

  • Takafuji N, Hirose K, Mitome M, Bando Y (2005) Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in the core. Geophys Res Lett 32:L06313. doi:10.1029/2005GL022773

    Article  Google Scholar 

  • Tanaka S (2007) Possibility of a low P-wave velocity layer in the outermost core from global SmKS waveforms. Earth Planet Sci Lett 259:486–499. doi:10.1016/j.epsl.2007.05.007

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2007) Solubility of FeO in (Mg, Fe)SiO3 perovskite and the post-perovskite phase transition. Phys Earth Planet Inter 160:319–325. doi:10.1016/j.pepi.2006.11.010

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2008) Determination of post-perovskite phase transition boundary up to 4,400 K and implications for thermal structure in D′′ layer. Earth Planet Sci Lett (in press). doi:10.1016/j.epsl.2008.10.004

  • Tateno S, Sinmyo R, Hirose K, Nishioka H (2009) The advanced ion-milling method for preparation of thin film using ion slicer: application to a sample recovered from diamond-anvil cell. Rev Sci Instrum (in press)

  • Thomas C, Kendall JM, Lowman J (2004) Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth Planet Sci Lett 225:105–113. doi:10.1016/j.epsl.2004.05.038

    Article  Google Scholar 

  • van Cappellen E, Doukhan JC (1994) Quantitative transmission X-ray microanalysis of ionic compounds. Ultramicroscopy 53:343–349. doi:10.1016/0304-3991(94)90047-7

    Article  Google Scholar 

  • van der Hilst RD, de Hoop MV, Wang P, Shim SH, Ma P, Tenorio L (2007) Seismostratigraphy and thermal structure of Earth’s core–mantle boundary region. Science 315:1813–1817. doi:10.1126/science.1137867

    Article  Google Scholar 

  • Wood BJ (2000) Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet Sci Lett 174:341–354. doi:10.1016/S0012-821X(99)00273-3

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Tateno, R. Sinmyo, and E. Takahashi for technical support and discussions. The manuscript was remarkably improved by comments from two anonymous reviewers and the Editor. X-ray diffraction measurements were conducted at SPring-8 (proposal no. 2007A0099 and 2007B0099). This research was supported by grant from JSPS to K.H. and Nanotechnology Network Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruka Ozawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, H., Hirose, K., Mitome, M. et al. Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core. Phys Chem Minerals 36, 355–363 (2009). https://doi.org/10.1007/s00269-008-0283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0283-x

Keywords

Navigation