Skip to main content

Advertisement

Log in

The compressibility of Fe- and Al-bearing phase D to 30 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-pressure in situ X-ray diffraction experiment of Fe- and Al-bearing phase D (Mg0.89Fe0.14Al0.25Si1.56H2.93O6) has been carried out to 30.5 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields values of V 0 = 86.10 ± 0.05 Å3; K 0 = 136.5 ± 3.3 GPa and K′ = 6.32 ± 0.30. If K′ is fixed at 4.0 K 0 = 157.0 ± 0.7 GPa, which is 6% smaller than Fe–Al free phase D reported previously. Analysis of axial compressibilities reveals that the c-axis is almost twice as compressible (K c  = 93.6 ± 1.1 GPa) as the a-axis (K a  = 173.8 ± 2.2 GPa). Above 25 GPa the c/a ratio becomes pressure independent. No compressibility anomalies related to the structural transitions of H-atoms were observed in the pressure range to 30 GPa. The density reduction of hydrated subducting slab would be significant if the modal amount of phase D exceeds 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson OL, Issak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543

    Article  Google Scholar 

  • Crichton WA, Ross NL (2000a) Single-crystal equation of state measurements on Mg end members of the B-group minerals. In: Manghnani MN, Nellis WJ, Nicol MF (eds) Science and technology of high pressure. Proceeding of AIRAPT-17. University Press, Hyderabad, India, pp 587–590

    Google Scholar 

  • Crichton WA, Ross NL (2000b) Equation of state of phase E. Mineral Mag 64:561–567

    Article  Google Scholar 

  • Crichton WA, Ross NL (2002) Equation of state of dense hydrous magnesium silicate phase A, Mg7Si2O8(OH)6. Am Mineral 87:333–338

    Google Scholar 

  • Crichton WA, Ross NL, Gasparik T (1999) Equation of state of magnesium silicates anhydrous B and superhydrous B. Phys Chem Miner 26:570–575

    Article  Google Scholar 

  • Fei Y, Mao HK (1993) Static compression of Mg(OH)2 to 78 GPa at high temperature and constraints on the equation of state of fluid H2O. J Geophys Res 98:11875–11884

    Google Scholar 

  • Fiquet G, Dewaele A, Andrault D, Kunz M, LeBihan T (2000) Thermoelastic properties and crystal structure of MgSiO3 perovkite at lower mantle pressure and temperature conditions. Geophys Res Lett 27:21–24

    Article  Google Scholar 

  • Frost DJ (1999) The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation: a tribute to Boyd, F.R. Geochem Soc Special Publ 6:283–296

  • Frost DJ, Fei Y (1998) Stability of phase D at high pressure and high temperature. J Geophys Res 103:7463–7474

    Article  Google Scholar 

  • Frost DJ, Fei Y (1999) Static compression of the hydrous magnesium silicate phase D to 30 GPa at room temperature. Phys Chem Miner 26:415–418

    Article  Google Scholar 

  • Heinz DL, Jeanloz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893

    Article  Google Scholar 

  • Hirose K, Fei Y, Ono S, Yagi T, Funakoshi K (2001) In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth’s mantle. Earth Planet Sci Lett 184:567–573

    Article  Google Scholar 

  • Inoue T, Ueda T, Higo Y, Yamada A, Irifune T, Funakoshi K (2006) High pressure and high temperature stability and the equation of state of superhydrous phase B. In: Jacobsen SD, Van der Lee S (eds) Earth’s deep water cycle, AGU Geophys Monogr, Vol 168, Washington DC, pp 147–157

  • Irifune T, Kubo N, Isshiki M, Yamasaki Y (1998) Phase transformations in serpentine and transportation of water into the lower mantle. Geophys Res Lett 25:203–206

    Article  Google Scholar 

  • Jacobsen SD, Smyth JR, Spetzler H, Holl CM, Frost DJ (2004) Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys Earth Planet Inter 143–144:47–56

    Article  Google Scholar 

  • Kanzaki M (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter 66:307–312

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E, Funakoshi K (2004) Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophys Res 109:B02209. DOI 10.1029/2003JB002438

  • Kawamoto T (2004) Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143–144:387–395

    Article  Google Scholar 

  • Kudoh Y, Nagase T, Mizohata H, Ohtani E, Sasaki S, Tanaka M (1997) Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050°C. Geophys Res Lett 24:1051–1054

    Article  Google Scholar 

  • Li B, Liebermann RC, Weidner DJ (1998) Elastic moduli of wadsleyite (β-Mg2SiO4) to 7 GPa and 873 K. Science 281:675–677

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2002) Phase relations and melt compositions in CMAS pyrolite–H2O system up to 25 GPa. Phys Earth Planet Inter 134:105–127

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite–H2O system up to 25 GPa. Phys Chem Miner 30:147–156

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263

    Article  Google Scholar 

  • Litasov KD, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005a) In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication to the 660-km discontinuity. Earth Planet Sci Lett 238:311–328

    Article  Google Scholar 

  • Litasov KD, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005b) Wet subduction versus cold subduction. Geophys Res Lett 32:L13312. DOI 10.1029/2005GL022921

    Google Scholar 

  • Litasov KD, Ohtani E (2007) Effect of water on the phase relations in the Earth’s mantle and deep water cycle. In: Ohtani E (ed) Advances in high-pressure mineralogy, Geol Soc Amer Spec Paper vol 421. in press

  • Liu LG (1987) Effects of H2O on the phase behaviour of the forsterite–enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter 49:142–167

    Article  Google Scholar 

  • Liu LG, Okamoto K, Yang YJ, Chen CC, Lin CC (2004) Elasticity of single-crystal phase D (a dense hydrous magnesium silicate) by Brillouin spectroscopy. Solid State Comm 132:517–520

    Article  Google Scholar 

  • Meng Y, Weidner DJ, Gwanmesia GD, Liebermann RC, Vaughan MT, Wang Y, Lienenweber K, Pacalo RE, Yeganeh-Haeri A, Zhao Y (1993) In situ high P-T X-ray diffraction studies on three polymorphs (α,β, α) of Mg2SiO4. J Geophys Res 98:22199–22207

    Article  Google Scholar 

  • Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265:1202–1203

    Article  Google Scholar 

  • Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143–144:255–269

    Article  Google Scholar 

  • Ohtani E, Mizobata H, Kudoh Y, Nagase T, Arashi H, Yurimoto H, Miyagi I (1997) A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett 24:1047–1050

    Article  Google Scholar 

  • Ohtani E, Mizobata H, Yurimoto H (2000) Stability of dense hydrous magnesium silicate phases in the system Mg2SiO4–O2 and MgSiO3–H2O at pressures up to 27 GPa. Phys Chem Miner 27:533–544

    Article  Google Scholar 

  • Ohtani E, Shibata T, Kubo T, Kato T (1995) Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys Res Lett 22:2553–2556

    Article  Google Scholar 

  • Ohtani E, Toma M, Kubo T, Kondo T, Kikegawa T (2003) In situ X-ray observation of decomposition of superhydrous phase B at high pressure and temperature. Geophys Res Lett 30. DOI 10.1029/2002GL015549

  • Ohtani E, Toma M, Litasov K, Kubo T, Suzuki A (2001) Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Planet Inter 124:105–117

    Article  Google Scholar 

  • Ono S, Kikegawa T, Iizuka T (2004) The equation of state of orthorhombic perovskite in a peridotitic mantle composition to 80 GPa: implications for chemical composition of the lower mantle. Phys Earth Planet Inter 145:9–17

    Article  Google Scholar 

  • Shieh SR, Mao HK, Hemley RJ, Ming LC (1998) Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet Sci Lett 159:13–23

    Article  Google Scholar 

  • Shieh SR, Mao HK, Hemley RJ, Ming LC (2000) In situ X-ray diffraction studies of dense hydrous magnesium silicates at mantle conditions. Earth Planet Sci Lett 177:69–80

    Article  Google Scholar 

  • Shim SH, Duffy TS, Takemura K (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet Sci Lett 203:729–739

    Article  Google Scholar 

  • Sinogeikin SV, Katsura T, Bass JD (1998) Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite. J Geophys Res 103:20819–20825

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T, Okada T, Terasaki H, Kato T, Kikegawa T (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Kondo T, Kuribayashi T (2001) Neutron diffraction study of hydrous phase G: hydrogen in the lower mantle hydrous silicate, phase G. Geophys Res Lett 28:3987–3990

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T (2002) First principles calculation of a high-pressure hydrous phase, δ-AlOOH. Geophys Res Lett 29. DOI 10.1029/2002GL015417

  • Tsuchiya J, Tsuchiya T, Tsuneyuki S (2005) First-principles study of hydrogen bond symmetrization of phase D under high pressure. Am Mineral 90:44–49

    Article  Google Scholar 

  • Tsuchiya T (2003) First-principles prediction of the P–V–T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 108. DOI 10.1029/2003JB002446

  • Xia X, Weidner DJ, Zhao H (1998) Equation of state of brucite: single-crystal Brillouin spectroscopy study and polycrystalline pressure–volume–temperature measurement. Am Mineral 83:68–74

    Google Scholar 

  • Yang H, Prewitt CT, Frost DJ (1997) Crystal structure of the dense hydrous magnesium silicate, phase D. Am Mineral 82:651–654

    Google Scholar 

  • Yusa H, Inoue T (1997) Compressibility of hydrous wadsleyite (β-phase) in Mg2SiO4 by high pressure X-ray diffraction. Geophys Res Lett 24:1831–1834

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Bass, T. Shinmei and one anonymous reviewer for thorough reviews and corrections of the manuscript. We thank to S. Ghosh, H. Terasaki, K. Nishida and T. Sakamaki for assistance during experiments at ‘SPring-8’ and to T. Shinmei for data exchange prior to publication. This work was supported by the grants in Aid for Scientific Researches from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 14102009 and 16075202), to EO and Vacate B grant from Japan Society for Promotion of Science (No. 17740344) to KL. This work was conducted under the Spring-8 proposal No 2005A0772-ND2b-np and is a part of the 21st Century Center-of-Excellence program ‘Advanced Science and Technology Center for the Dynamic Earth’ at Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin D. Litasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litasov, K.D., Ohtani, E., Suzuki, A. et al. The compressibility of Fe- and Al-bearing phase D to 30 GPa. Phys Chem Minerals 34, 159–167 (2007). https://doi.org/10.1007/s00269-006-0136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0136-4

Keywords

Navigation