Skip to main content

Advertisement

Log in

High-pressure properties of diaspore, AlO(OH)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The structural compression mechanism and compressibility of diaspore, AlO(OH), were investigated by in situ single-crystal synchrotron X-ray diffraction at pressures up to 7 GPa using the diamond-anvil cell technique. Complementary density functional theory based model calculations at pressures up to 40 GPa revealed additional information on the pressure-dependence of the hydrogen-bond geometry and the vibrational properties of diaspore. A fit of a second-order Birch–Murnaghan equation of state to the p–V data resulted in the bulk modulus B 0 = 150(3) GPa and B 0 = 150.9(4) GPa for the experimental and theoretical data, respectively, while a fit of a third-order Birch–Murnaghan equation of state resulted in B 0 = 143.7(9) GPa with its pressure derivative B′ = 4.4(6) for the theoretical data. The compression is anisotropic, with the a-axis being most compressible. The compression of the crystal structure proceeds mainly by bond shortening, and particularly by compression of the hydrogen bond, which crosses the channels of the crystal structure in the (001) plane, in a direction nearly parallel to the a-axis, and hence is responsible for the pronounced compression of this axis. While the hydrogen bond strength increases with pressure, a symmetrisation is not reached in the investigated pressure range up to 40 GPa and does not seem likely to occur in diaspore even at higher pressures. The stretching frequencies of the O–H bond decrease approximately linearly with increasing pressure, and therefore also with increasing O–H bond length and decreasing hydrogen bond length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) Water in minerals—a peak in the infrared. J Geophys Res 89:4059–4071

    Google Scholar 

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500

    Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high pressure crystallography. J Appl Crystallogr 30:461–466

    Article  Google Scholar 

  • Angel RJ (2001) EOS-FIT, version 5.2. Virginia Tech, Blacksburg, USA

    Google Scholar 

  • Angel RJ (2004) Absorption corrections for diamond-anvil pressure cells implemented in the software package–Absorb6.0. J Appl Crystallogr 37:486–492

    Article  Google Scholar 

  • Busing WR, Levy HA (1958) A single crystal neutron diffraction study of diaspore, AlO(OH). Acta Crystallogr 11:798–803

    Article  Google Scholar 

  • Catti M, Ferraris G, Hull S, Pavese A (1995) Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study. Phys Chem Miner 22:200–206

    Article  Google Scholar 

  • Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    Article  Google Scholar 

  • Duffy TS, Meade C, Fei Y, Mao H-K, Hemley RJ (1995a) High-pressure phase transition in brucite, Mg(OH)2. Am Mineral 80:222–230

    Google Scholar 

  • Duffy TS, Shu J, Mao H-K, Hemley RJ (1995b) Single-crystal X-ray diffraction of brucite to 14 GPa. Phys Chem Minerals 22:277–281

    Article  Google Scholar 

  • Eichhorn K (1978) AVSORT, modified 1995. HASYLAB/DESY, Hamburg, Germany

    Google Scholar 

  • Eichhorn K (1987) REDUCE, modified 1995. HASYLAB/DESY, Hamburg, Germany

    Google Scholar 

  • Ewing FJ (1935) The crystal structure of diaspore. J Chem Phys 3:203–207

    Article  Google Scholar 

  • Farmer VD (1974) Infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Finger LW (1971) VOLCAL. Carnegie Institute of Washington, Geophysical Laboratory, Washington, DC, USA

  • Finger LW, King HE (1978) A revised method of operation of the single-crystal diamond cell and refinement of the structure of NaCl at 32 kbar. Am Mineral 63:337–342

    Google Scholar 

  • Garg N, Karmakar S, Sharma SM, Busseto E, Sikka SK (2004) High-pressure X-ray diffraction studies on β-Ni(OH)2. Physica B 349:245–250

    Article  Google Scholar 

  • Grevel KD, Burchard M, Fasshauer DW, Peun T (2000) Pressure-volume-temperature behavior of diaspore and corundum: an in situ X-ray diffraction study comparing different pressure media. J Geophys Res–Sol Ea 105:27877–27887

    Article  Google Scholar 

  • Haussühl S (1993) Thermoelastic properties of beryl, topaz, diaspore, sanidine and periclase. Z Kristallogr 204:67–76

    Article  Google Scholar 

  • Hazen RM, Downs RT, Prewitt CT (2000) Principles of comparative crystal chemistry. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Mineral Soc Am Rev Mineral Geochem 41:1–33

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Kruger MB, Williams Q, Jeanloz R (1989) Vibrational spectra of Mg(OH)2 and Ca(OH)2 under pressure. J Chem Phys 91:5910–5915

    Article  Google Scholar 

  • Kudoh Y, Ito E, Takeda H (1987) Effect of pressure on the crystal structure of perovskite-type MgSiO3. Phys Chem Miner 14:350–354

    Article  Google Scholar 

  • Kunz M, Leinenweber K, Parise JB, Wu T-C, Bassett WA, Brister K, Weidner DJ, Vaughan MT, Wang Y (1996) The baddeleyite-type high pressure phase of Ca(OH)2. High Press Res 14:311–319

    Google Scholar 

  • Lee MH (1995) Advanced pseudopotentials for large scale electronic structure calculations. Ph.D. Thesis, University of Cambridge; Psi-k Newsletter 67 http://psi-k.dl.ac.uk/newsletters/News_67/Highlight_67.pdf

  • Leinenweber K, Partin DE, Schuelke U, O’Keeffe M, Von Dreele RB (1997) The structure of high pressure Ca(OD)2 II from powder neutron diffraction: relationship to the ZrO2 and EuI2 structures. J Solid State Chem 132:267–273

    Article  Google Scholar 

  • Li S, Ahuja R, Johansson B (2006) The elastic and optical properties of the high-pressure hydrous phase δ-AlOOH. Solid State Commun 137:101–106

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  • Lin JS, Qteish A, Payne MC, Heine V (1993) Optimised and transferable non-local separable ab initio pseudopotentials. Phys Rev B 47:4174–4180

    Article  Google Scholar 

  • Lundgren P, Giardini D (1994) Isolated deep earthquakes and the fate of subduction in the mantle. J Geophys Res 99:15833–15842

    Article  Google Scholar 

  • Lutz HD, Henning J, Engelen B (1990) Lattice vibration spectra Part LVIII. OD(OH) frequency versus H-bond distance correlation diagrams a case study for isomorphic M(SO3)2·3H2O (M = Mg, Mn, Fe, Co, Ni, Zn). J Mol Struct 240:275–283

    Article  Google Scholar 

  • Mao H, Bell P, Shaner J, Steinberg D (1978) Specific volume measurement of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J Appl Phys 49:3276–3283

    Article  Google Scholar 

  • Mao H-k, Shu J, Hu J, Hemley RJ (1994) High-pressure X-ray diffraction study of diaspore. Solid State Commun 90:497–500

    Article  Google Scholar 

  • Meade C, Jeanloz R (1991) Deep-focus earthquakes and recycling of water into the earths mantle. Science 252:68–72

    Article  Google Scholar 

  • Mikenda W (1986) Stretching frequencies versus bond distance correlation of O-D(H)···Y (Y = N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates. J Mol Struct 326:123–130

    Article  Google Scholar 

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Mineral Soc Am Rev Mineral Geochem 41:445–520

  • Milman V, Winkler B, White JA, Pickard CJ, Payne MC, Akhmatskaya EV, Nobes RH (2000) Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int J Quantum Chem 77:895–910

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Nagai T, Kagi H, Yamanaka T (2003) Variation of hydrogen bonded O···O distances in goethite at high pressure. Am Mineral 88:1423–1427

    Google Scholar 

  • Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Amer Chem Soc 77:6480–6486

    Article  Google Scholar 

  • Novak A (1974) Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct Bond 18:177–216

    Article  Google Scholar 

  • Ohtani E, Litasov K, Suzuki A, Kondo T (2001) Stability field of new hydrous phase, delta-AlOOH, with implications for water transport into the deep mantle. Geophys Res Lett 29:3991–3993

    Article  Google Scholar 

  • Parise JB, Leinenweber K, Weidner DJ, Tan K, Von Dreele RB (1994) Pressure-induced H bonding: Neutron diffraction study of brucite, Mg(OD)2, to 9.3 GPa. Am Mineral 79:193–196

    Google Scholar 

  • Parise JB, Cox H, Kagi H, Li R, Marshall WG, Loveday JS, Klotz S (1998a) Hydrogen bonding in M(OD)2 compounds under pressure. Rev High Press Sci Technol 7:211–216

    Google Scholar 

  • Parise JB, Theroux B, Li R, Loveday JS, Marshall WG, Klotz S (1998b) Pressure dependence of hydrogen bonding in metal deuteroxides: a neutron powder diffraction study of Mn(OD)2 and β-Co(OD)2. Phys Chem Miner 25:130–137

    Article  Google Scholar 

  • Pascale F, Tosoni S, Zicovich-Wilson C, Ugliengo P, Orlando R, Dovesi R (2004) Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity. Chem Phys Lett 396:308–315

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Raugei S, Silvestrelli PL, Parrinello M (1999) Pressure-induced frustration and disorder in Mg(OH)2 and Ca(OH)2. Phys Rev Lett 83:2222–2225

    Article  Google Scholar 

  • Refson K, Tulip PR, Clark SJ (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys Rev B 73:155114

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation–quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Ruoff AL, Vanderborgh CA (1991) Hydrogen reduction at high pressure: Implication for claims of metallic hydrogen. Phys Rev Lett 66:754–757

    Article  Google Scholar 

  • Ruoff AL, Vanderborgh CA (1993) Hydrogen reduction at high pressure: Implication for claims of metallic hydrogen. Phys Rev Lett 71:4279

    Article  Google Scholar 

  • Ryskin YI (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium. In: Farmer VD (ed) The infrared spectra of minerals. Mineralogical Society, London, pp 137–182

    Google Scholar 

  • Sano A, Ohtani E, Kubo T, Funakoshi K-i (2004) In situ observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide d-AlOOH at high pressure and temperature. J Phys Chem Solids 65:1547–1554

    Article  Google Scholar 

  • Schmidt MW (1995) Lawsonite: upper pressure stability and formation of higher density hydrous phases. Am Mineral 80:1286–1292

    Google Scholar 

  • Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  Google Scholar 

  • Sheldrick GM (1997) SHELXL97-2. Program for refinement of crystal structures. University of Göttingen, Göttingen, Germany

  • Sherman DM (1991) Hartree-Fock band structure, equation of state, and pressure-induced hydrogen bonding in brucite, Mg(OH)2. Am Mineral 76:1769–1772

    Google Scholar 

  • Shinoda K, Nagai T, Aikawa N (2000) Pressure-dependent anharmonic coefficient of OH in portlandite by NIR-IR spectroscopy with DAC. J Miner Petrol Sci 95:65–70

    Google Scholar 

  • Stalder R, Ulmer P (2001) Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone. Contrib Mineral Petrol 140:670–679

    Google Scholar 

  • Steiner Th, Saenger W (1994) Lengthening of the covalent O–H bond in O–H···O hydrogen bonds re-examined from low-temperature neutron diffraction data of organic compounds. Acta Crystallogr B50:348–357

    Google Scholar 

  • Suzuki A, Ohtani E, Kamada T (2000) A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000°C. Phys Chem Miner 27:689–693

    Article  Google Scholar 

  • Szalay V, Kovács L, Wöhlecke M, Libowitzky E (2002) Stretching potential and equilibrium length of the OH bond in solids. Chem Phys Lett 354:56–61

    Article  Google Scholar 

  • Thompson AB (1992) Water in the earth’s upper mantle. Nature 358:295–302

    Article  Google Scholar 

  • Tosoni S, Pascale F, Ugliengo P, Orlando R, Saunders VR, Dovesi R (2005) Quantum mechanical calculation of the OH vibrational frequency in crystalline solids. Mol Phys 103:2549–2558

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T (2002) First principles calculation of a high-pressure hydrous phase, delta-AlOOH. Geophys Res Lett 29:1909

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalised eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  • Vanpeteghem CB, Ohtani E, Kondo T (2002) Equation of state of the hydrous phase delta-AlOOH at room temperature up to 22.5 GPa. Geophys Res Lett 29:1119

    Article  Google Scholar 

  • Williams G, Guenther L (1996) Pressure-induced changes in the bonding and orientation of hydrogen in FeOOH-goethite. Solid State Commun 100:105–109

    Article  Google Scholar 

  • Winkler B, Langer K, Johannsen PG (1989) The influence of pressure on the OH valence vibration of zoisite—An infrared spectroscopic study. Phys Chem Miner 16(7):668–671

    Article  Google Scholar 

  • Winkler B, Hytha M, Pickard C, Milman V, Warren M, Segall M (2001) Theoretical investigation of bonding in diaspore. Eur J Mineral 13:343–349

    Article  Google Scholar 

  • Xu J-a, Hu J, Ming L-c, Huang E, Xie H (1994) The compression of diaspore, AlO(OH) at room temperature. Geophys Res Lett 21:161–164

    Article  Google Scholar 

Download references

Acknowledgments

AF and BW gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Grants WI 1232/21-3 and WI 1232/25-1), Germany. This research is also funded by the European Science Foundation (ESF), in the framework of the EuroMinScI project, which is funded from the EC sixth Framework Programme under Contract No. ERAS-CT-2003-980409. We would like to thank the Centre for Scientific Computing in Frankfurt for use of their computer facilities, and HASYLAB for synchrotron beam time. DJW acknowledges funding from the MaterialsGrid project (http://www.materialsgrid.org). The authors thank Jürgen Schreuer (J. W. Goethe University, Frankfurt) for the single-crystal fragment of diaspore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Friedrich.

Electronic supplementary material

Below is the link to the electronic supplementary material

269_2006_135_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, A., Wilson, D.J., Haussühl, E. et al. High-pressure properties of diaspore, AlO(OH). Phys Chem Minerals 34, 145–157 (2007). https://doi.org/10.1007/s00269-006-0135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0135-5

Keywords

Navigation