Skip to main content
Log in

Modeling the thermodynamic parameters of six endmember garnets at ambient and high pressures from vibrational data

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Raman and infrared spectroscopic data at ambient and high pressures were used to compute the lattice contribution to the heat capacities and entropies of six endmember garnets: pyrope, almandine, spessartine, grossular, andradite and uvarovite. Electronic, configurational and magnetic contributions are obtained from comparing available calorimetric data to the computed lattice contributions. For garnets with entropy in excess of the computed lattice contribution, the overwhelming majority is found in the subambient temperature regime. At room temperature, the non-lattice entropy is approximately 11.5 J/mol-K for pyrope, 49 J/mol-K for almandine, and 19 J/mol-K for andradite. The non-lattice entropy for pyrope and some for almandine cannot be accounted for by magnetic or electronic contributions and is likely to be configurational in nature. Estimates of low temperature non-lattice entropies for both spessartine and uvarovite are made in absence of calorimetric measurements and are based on low temperature calorimetry of other minerals containing the Mn2+ and Cr3+ cations as well as on solid solution garnets containing these cations. The estimate for uvarovite non-lattice entropy is approximately 18 J/mol-K, while for spessartine, approximately 45 J/mol-K. Neither of these cations is expected to provide electronic contributions to the entropy. For both iron-bearing garnets, a small electronic or magnetic entropy contribution continues above ambient temperatures. High pressure data on pyrope, grossular and andradite permit calculation of the thermodynamic parameters at high pressures, which are important for computation of processes in the Earth’s mantle. Thermal expansion coefficients of these materials were found to be 1.6, 1.5, 1.6×10−5 K−1 at 298 K, respectively, using a Maxwell relation. These closely match the literature values at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson OL, Isaak DL, Oda H (1991) Thermoelastic parameters for six minerals at high temperature. J Geophys Res 96(B11):18037–18046

    Article  Google Scholar 

  • Anovitz LM, Essene EJ, Metz GW, Bohlen SR, Westrum EF Jr, Hemingway BS (1993) Heat capacity and phase equilibria of Almandine, Fe3Al2Si3O12. Geochim Cosmochim Acta 57:4191–4204

    Article  Google Scholar 

  • Bass JD (1986) Elasticity of uvarovite and andradite garnets. J Geophys Res 91:7505–7516

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2- TiO2-H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Am Mineral 75:328–344

    Google Scholar 

  • Boffa Ballaran T, Carpenter MA, Geiger CA, Koziol AM (1999) Local structural heterogeneity in garnet solid solutions. Phys Chem Minerals 26:554–569

    Article  Google Scholar 

  • Bosenick A, Geiger CA, Cemic L (1996) Heat capacity measurements of synthetic pyrope-grossular garnets between 320 and 1000 K by differential scanning calorimetry. Geochim Cosmochim Acta 60:3215–3227

    Article  Google Scholar 

  • Chai M, Brown JM, Slutsky LJ (1997) The elastic constants of a pyrope-grossular-almandine garnet to 20 GPa. Geophys Res Lett 24:523–526

    Article  Google Scholar 

  • Chopelas A (1990b) Thermal expansion, heat capacity, and entropy of MgO at mantle pressures. Phys Chem Minerals 17:142–148

    Google Scholar 

  • Chopelas A (1990a) Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy. Phys Chem Minerals 17:149–157

    Google Scholar 

  • Chopelas A (1991) Thermal properties of β-Mg2SiO4 at mantle pressures derived from vibrational spectroscopy: Implications for the mantle at 400 km depth. J Geophys Res B96:11817–11829

    Article  Google Scholar 

  • Chopelas A (1996) Thermal expansivity of lower mantle phases MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy. Phys Earth Planet Inter 98:3–15

    Article  Google Scholar 

  • Chopelas A (1999) Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high pressure spectroscopic data. Am Mineral 84:233–245

    Google Scholar 

  • Chopelas A (2000) Thermal expansivity of mantle relevant magnesium silicates from vibrational spectroscopy at high pressures. Am Mineral 85:270–278

    Google Scholar 

  • Chopelas A (2005) Single-crystal Raman spectroscopy of uvarovite (Ca3Cr2Si3O12) garnet. Phys Chem Minerals 32:525–530

    Article  Google Scholar 

  • Chopelas A, Boehler R, Ko J (1994) Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: Implications for Mg2SiO4 phase equilibrium. Phys Chem Minerals 21:351–359

    Article  Google Scholar 

  • Chopelas A, Reichmann HJ, Zhang L (1996) Sound velocities of five minerals to mantle pressures determined by the sideband fluorescence method. In: Dyar MD, McCammon C, Schaeffer MW (eds) Mineral spectroscopy: a tribute to Roger G Burns, vol. The Geochemical Society, Houston, pp 229–242

  • Drulis M, Iwasieczko W, Wolcyrz M, Drulis H (2002) Low-temperature specific heat of non-stoichiometric β-ytterbium deuteride. J Alloys Comp 337:64–68

    Article  Google Scholar 

  • Fabrichnaya OB (1995) Thermodynamic data for phases in the FeO-MgO-SiO2 system and phase relations in the mantle transition zone. Phys Chem Minerals 22:323–332

    Article  Google Scholar 

  • Fei Y, Saxena SK, Navrotsky A (1990) Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO-SiO2 at high pressure and high temperature. J Geophys Res B95:6915–6928

    Article  Google Scholar 

  • Ganguly J, Saxena SK (1987) Mixtures and mineral reactions, vol 19. Springer, Berlin, Heidelberg New York

  • Ganguly J, Cheng W, Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution; new experimental data, an optimized model, and thermometry applications. Contrib Mineral Petrol 126(1–2):137–151

    Article  Google Scholar 

  • Geiger CA (1998) AA powder infrared spectroscopic investigation of garnet binaries in the system Mg3Al2Si3O12–Fe3Al2Si3O12–Mn3Al2Si3O12–Ca3Al2Si3O12. Eur J Mineral 10(3):407–422

    Google Scholar 

  • Geiger CA, Armbruster T (1997) Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet; structural dynamic and thermodynamic properties. Am Mineral 82(7–8):740–747

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV: a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Ghiorso MS, Hirshmann MM, Reiners PW, Kress VC (2002) The pMELTS: the revision of MELTS for improved calculation of phase boundaries and major element partitioning related to partial melting of the mantle to 3 GPa. Geoch Geophys Geosyst 3(5):1030

    Article  Google Scholar 

  • Gillet P, Richet P, Guyot F, Fiquet G (1991) High-temperature thermodynamic properties of forsterite. J Geophys Res B 96:11805–11816

    Article  Google Scholar 

  • Gillet P, Fiquet G, Malezieux JM, Geiger CA (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets; pyrope, grossular and andradite. Eur J Mineral 4(4):651–664

    Google Scholar 

  • Grevel KD, Navrotsky A, Kaul WA, Faßhauer DW, Majzlan J (2001) Thermodynamic data of the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-surasaaite). Phys Chem Minerals 28:475–487

    Article  Google Scholar 

  • Haselton HT Jr, Westrum EF Jr (1980) Low temperature heat capacities of synthetic pyrope, grossular, and pyrope60grossular40. Geochim Cosmochim Acta 44:701–709

    Article  Google Scholar 

  • Hofmeister AM (1987) Single-crystal absorption and reflection infrared spectroscopy of forsterite and fayalite. Phys Chem Minerals 14:499–513

    Article  Google Scholar 

  • Hofmeister AM (1996) Thermodynamic properties of stishovite at mantle conditions determined from pressure variations of vibrational modes. In: Dyar MD, McCammon C, Schaefer MW (eds) Mineral spectroscopy: a tribute to Roger G Burns. The Geochemical Society, Houston, pp 215–227

  • Hofmeister AM, Chopelas A (1991a) Thermodynamic properties of pyrope and grossular from vibrational spectroscopy. Am Mineral 76:880–891

    Google Scholar 

  • Hofmeister AM, Chopelas A (1991b) Vibrational spectroscopy of end-member silicate garnets. Phys Chem Minerals 17:503–526

    Article  Google Scholar 

  • Hofmeister AM, Fagan TJ, Campbell KM, Schaal RB (1996) Single-crystal IR spectroscopy of pyrope-almandine garnets with minor amounts of Mn and Ca. Am Mineral 81:418–428

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally-consistent thermodynamic dataset for phases of petrological interest. J Met Petrol 16:309–343

    Google Scholar 

  • Isaak DG, Anderson OL, Oda H (1992) High-temperature thermal expansion and elasticity of calcium-rich garnets. Phys Chem Minerals 19:106–120

    Article  Google Scholar 

  • Kolesnik YN, Yachmenev VY, Vilkovskiy VA, Vishnevskiy AA (1994) Heat capacity of 2–300 K temperature range and entropy of chromium-bearing garnets. Geokhimiya 1994(1):89–100

    Google Scholar 

  • Kolesov BA, Geiger CA (1998) Raman spectra of silicate garnets. Phys Chem Minerals 25:142–151

    Article  Google Scholar 

  • Kolesov BA, Geiger CA (2000) Low-temperature single-crystal Raman spectrum of pyrope. Phys Chem Minerals 27:645–649

    Article  Google Scholar 

  • Krupka KM, Robie RA, Hemingway BS (1979) High temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KalSi2O8 glass, grossular and NaAlSi3O8 glass. Am Mineral 64:86–101

    Google Scholar 

  • Kuskov OL, Galimzyanov RF, Khitarov NI, Urusov VS (1983) Phase relationships in the MgO–SiO2 system at the PT conditions of the mantle transition zone (Translated). Geokhimiya 8:1075–1091

    Google Scholar 

  • McAloon BP, Hofmeister AM (1995) Single-crystal IR spectroscopy of grossular-andradite garnets. Am Mineral 80:1145–1156

    Google Scholar 

  • Moore RK, White WB (1971) Vibrational spectra of the common silicates: I. The garnets. Am Mineral 56:54–71

    Google Scholar 

  • Robie RA, Hemingway BS, Takei H (1982) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral 67(5–6):470–482

    Google Scholar 

  • Robie RA, Haselton HT, Hemingway BS (1984) Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K. Am Mineral 69(3–4):349–357

    Google Scholar 

  • Robie RA, Bin Z, Hemingway BS, Barton MD (1987) Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for Δ f G 0 m (298.15 K) of hedenbergite and wollastonite. Geochim Cosmochim Acta 51:2219–2224

    Article  Google Scholar 

  • Robie RA, Huebner JS, Hemingway BS (1995) Heat capacities and thermodynamic properties of braunite (Mn7SiO12) and rhodonite (MnSiO3). Am Mineral 80(5–6):560–575

    Google Scholar 

  • Rodehorst U, Carpenter MA, Boffa Ballaran T, Geiger CA (2004) Local structural heterogeneity, mixing behaviour and saturation effects in the grossular–spessartine solid solution. Phys Chem Minerals 31(7):387–404

    Article  Google Scholar 

  • Savage FS, Chopelas A (2002) Single crystal Raman spectroscopy and thermodynamics of garnet solid solutions I: Grossular–Andradite. EOS Trans Am Geophys U (abstract)

  • Savage FS, Chopelas A (2003) Single crystal Raman spectroscopy and thermodynamics of garnet solid solutions II: Pyrope–Almandine binary. EOS Trans Am Geophys U (abstract, Fall 2003)

  • Saxena SK, Chatterjee N, Fei Y, Shen G (1993) Thermodynamic data on oxides and silicates, vol. Springer, Berlin, Heidelberg New York p 428

  • Skinner BJ (1956) Physical properties of end-members of the garnet group. Am Mineral 41:428–436

    Google Scholar 

  • Span R, Wagner W (2003) Equations of state for technical applications. I. Simultaneously optimized functional forms for polar and non polar fluids. Int J Thermophys 24(1):1–36

    Article  Google Scholar 

  • Tequi C, Robie RA, Hemingway BS, Neuville DR, Richet P (1991) Melting and thermodynamic properties of pyrope (Mg3Al2Si3O12). Geochim Cosmochim Acta 55(4):1005–1010

    Article  Google Scholar 

  • Thieblot L, Tequi C, Richet P (1999) High-temperature heat capacity of grossular (Ca3Al2Si3O12), enstatite (MgSiO3), and titanite (CaTiSiO5). Am Mineral 84(5):848–855

    Google Scholar 

  • Ulbricht HH, Waldbaum DR (1976) Structural and other contributions to third law entropies of silicates. Geochim Cosmochim Acta 40(1):1–24

    Article  Google Scholar 

  • Webb SL (1989) The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa. Phys Chem Minerals 89(7):684–692

    Google Scholar 

  • Wood BJ (1981) Crystal field electronic effects on the thermodynamic properties of Fe2+ minerals. In: Newton RCN, A, Wood, BJ (eds) Thermodynamics of minerals and melts, vol 1. Springer, Berlin Heidelberg New York, pp 63–84

  • Zhang L, Ahsbahs H, Kutoglu A (1998) Hydrostatic compression and crystal structure of pyrope to 33 GPa. Phys Chem Minerals 25(4):301

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A, Geiger CA (1999) Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular, and andradite garnets at high pressure. Phys Chem Minerals 27:52–58

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank C. A. Geiger for sending me his data and fruitful discussions, A. M. Hofmeister for sending me her data prior to publication, J. Ganguly for a thoughtful review, and J. M. Brown for fruitful discussions and critique. This work was supported by NSF grant EAR-0296205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Chopelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopelas, A. Modeling the thermodynamic parameters of six endmember garnets at ambient and high pressures from vibrational data. Phys Chem Minerals 33, 363–376 (2006). https://doi.org/10.1007/s00269-006-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0065-2

Keywords

Navigation