Skip to main content
Log in

Low-temperature heat capacity of magnesioferrite (MgFe2O4)

  • Original paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The low-temperature heat capacity of magnesioferrite (MgFe2O4) was measured between 1.5 K and 300 K, and thermochemical functions were derived from the results. No heat capacity anomaly was observed. From our data, we suggest a standard entropy (298.15 K) for magnesioferrite of 120.8±0.6 J mol−1 K−1, which is about 2.4 J mol−1 K−1 higher than previously reported calorimetric studies; but is in rough agreement with predictions from sets of internally consistent thermodynamic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agranovskaya AI, Saksonov YG (1966) Crystal structure of solid solutions in Mg2TiO4-MgFe2O4 and Mg2TiO4-MgCr2O4 systems. Soviet Phys Crystall USSR 11:196–198

    Google Scholar 

  • Allen WC (1966a) System MgCr2O4-MgFe2O4. Am Ceramic Soc Bull 45:374–377

    Google Scholar 

  • Allen WC (1966b) Temperature dependence of properties of magnesium ferrite. J Am Ceramic Soc 49:257–259

    Article  Google Scholar 

  • Blackman LCF (1959a) On the formation of Fe2+ in the system MgO-Fe2O3-MgFe2O4 at high temperatures. J Am Ceramic Soc 42:143–145

    Article  Google Scholar 

  • Blackman LCF (1959b) On the solubility of MgO in magnesium ferrite. Trans Faraday Soc 55:391–398

    Article  Google Scholar 

  • Busca G, Daturi M, Finocchio E, Lorenzelli V, Ramis G, Willey RJ (1997) Transition metal mixed oxides as combustion catalysts: Preparation, characterization and activity mechanisms. Catal Today 33:239–249

    Article  Google Scholar 

  • Degrave E, Desitter J, Vandenberghe R (1975) Cation distribution in spinel system (Y)Mg2TiO4-(1-Y)MgFe2O4. Appl Phys 7:77–80

    Article  Google Scholar 

  • Della Guista A, Carbonin S, Ottonello G (1996) Temperature dependent disorder in a natural Mg-Al-Fe2+ -Fe3+ spinel. Mineral Mag 60:603–616

    Article  Google Scholar 

  • Donald JR, Lauzon PH, Duran J, Parra R, Tejeda L (1999) Evaluation of refractory brick classes for the Cerro Matoso SA electric furnace. Cim Bull 92:111–118

    Google Scholar 

  • Ganguly J (1982) Mg-Fe disorder in ferromagnesian silicates: II. Thermodynamics, kinetics, and geological applications. In: Saxena SK (ed) Advances in physical geochemistry. Springer, Berlin Heidelberg New York, pp 58–99

    Google Scholar 

  • Gmelin E (1987) Low-temperature calorimetry: a particular branch of thermal analysis. Thermochim Acta 110:183–208

    Article  Google Scholar 

  • Gusmano G, Montesperelli G, Morten B, Prudenziati M, Pumo A, Traversa E (1996) Thick films of MgFe2O4 for humidity sensors. J Mat Process Tech 56:589–599

    Article  Google Scholar 

  • Harrison RJ, Putnis A (1997) The coupling between magnetic and cation ordering: a macroscopic approach. Eur J Mineral 9:1115–1130

    Google Scholar 

  • Harrison RJ, Putnis A (1998) The magnetic properties and crystal chemistry of oxide spinel solid solutions. Surv Geophys 19:461–520

    Article  Google Scholar 

  • Harrison RJ, Putnis A (1999) Determination of the mechanism of cation ordering in magnesioferrite (MgFe2O4) from the time- and temperature-dependence of magnetic susceptibility. Phys Chem Miner 26:322–332

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metam Geol 16:309–343

    Article  Google Scholar 

  • King EG (1954) Heat capacities at low temperatures and entropies at 298.16 °K of calcium and magnesium ferrites. J Am Chem Soc 76:5849–5850

    Article  Google Scholar 

  • Klemme S (2004a) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: Experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. Lithos 77:639–646

    Article  Google Scholar 

  • Klemme S (2004b) The influence of low-temperature phase transitions on thermodynamic properties of some spinels and garnets. Lithos 73:S58

    Google Scholar 

  • Klemme S, van Miltenburg JC (2002) Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperatures. Phys Chem Miner 29:663–667

    Article  Google Scholar 

  • Klemme S, van Miltenburg JC (2003) Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures. Am Mineral 88:68–72

    Google Scholar 

  • Klemme S, van Miltenburg JC (2004) The entropy of zinc chromite (ZnCr2O4). Min Mag 68:515–522

    Article  Google Scholar 

  • Klemme S, O’Neill HStC, Schnelle W, Gmelin E (2000) The heat capacity of MgCr2O4, FeCr2O4, and Cr2O3 at low temperatures and derived thermodynamic properties. Am Mineral 85:1686–1693

    Google Scholar 

  • Kriessman CJ, Harrison SE, Callen HB (1955) Ionic distribution in Magnesium Ferrite. Phys Rev 98:1562–1562

    Article  Google Scholar 

  • Kroll H, Lueder T, Schlenz H, Kirfel A, Vad T (1997) The Fe2+ -Mg distribution in orthopyroxene: a critical assessment of its potential as a geospeedometer. Eur J Mineral 9:705–733

    Google Scholar 

  • Kyte FT, Bohor BF (1995) Nickel-rich magnesiowustite in Cretaceous/Tertiary boundary spherules crystallized from ultramafic, refractory silicate liquids. Geochim Cosmochim Acta 59:4967–4974

    Article  Google Scholar 

  • Kyte FT, Bostwick JA (1995) Magnesioferrite spinel in Cretaceous/Tertiary Boundary sediments of the Pacific Basin - Remnants of hot, early ejecta from the Chicxulub Impact. Earth Planet Sci Lett 132:113–127

    Article  Google Scholar 

  • Mozzi RL, Paladino AE (1963) Cation distributions in nonstoichiometric magnesium ferrite. J Chem Phys 39:435–437

    Article  Google Scholar 

  • Murata K, Inaba M, Saito M, Takahara I, Mimura N (2003) Methane decomposition over iron-based catalysts in the presence of O2 and CO2. J Jpn Petrol Inst 46:196–202

    Article  Google Scholar 

  • Navrotsky A (1986) Cation-distribution energetics and heats of mixing in MgFe2O4-MgAl2O4, ZnFe2O4-ZnAl2O4, and NiAl2O4-ZnAl2O4 spinels—study by high-temperature calorimetry. Am Mineral 71:1160–1169

    Google Scholar 

  • Navrotsky A, Kleppa OJ (1968) Thermodynamics of formation of simple spinels. J Inorg Nucl Chem 30:479–498

    Article  Google Scholar 

  • Nedelcu G, Nicolescu IV (1990) N-Butene oxyhydrogenation to butadiene on magnesium ferrite catalysts 1. Catalytic activity of MgO-Fe2O3 system according to chemical composition. Rev Chim 41:881–884

    Google Scholar 

  • O’Neill HSC, Annersten H, Virgo D (1992) The temperature-dependence of the cation distribution in Magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mossbauer-spectroscopy. Am Mineral 77:725–740

    Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at high temperatures. U.S. Geological Survey Bulletin, 2131. United States Government Printing Office, Washington DC

  • Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pa) pressures and at higher temperatures. U.S. Geological Survey Bulletin, 1452. United States Government Printing Office, Washington DC

  • Sack RO, Ghiorso MS (1991a) Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. Am Mineral 76:827–847

    Google Scholar 

  • Sack RO, Ghiorso MS (1991b) An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contrib Mineral Petrol 106:474–505

    Article  Google Scholar 

  • Schnelle W, Gmelin E (2002) Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim Acta 391:41–49

    Article  Google Scholar 

  • Schnelle W, Engelhardt J, Gmelin E (1999) Specific heat capacity of Apiezon N high vacuum grease and of Duran borosilicate glass. Cryogenics 39:271–275

    Article  Google Scholar 

  • Sundararajan MD, Narayanasamy A, Nagarajan T, Haggstrom L, Swamy CS, Ramanujachary KV (1984) Mossbauer investigation of magnesium ferrite-aluminate. J Phys C Solid State Phys 17:2953–2965

    Article  Google Scholar 

  • Tellier JC (1967) On substitution of Iron-3 ions by tervalent, tetravalent and tentavalent ions in magnesium ferrite. Rev Chim Miner 4:325–332

    Google Scholar 

  • Walters DS, Wirtz GP (1971) Kinetics of cation ordering in magnesium ferrite. J Am Ceram Soc 54:563–564

    Article  Google Scholar 

  • Yamaguchi A, Okamura T (1989) Sintering and compounds in the MgCr2O4-TiOx system. Ceram Int 15:147–153

    Article  Google Scholar 

  • Yerushal S, Neumark H (1974) Use of magnesium ferrite as reference substance to measure passage of food in gastrointestinal-tract of ruminants. IEEE Trans Magn MA10:958–960

    Article  Google Scholar 

  • Zhao YM, Zhang YN, Bi CS, Guo LH (1998) The discovery of magnesioferrite from Au (Fe, Cu) magnesian skarn deposits and study of the magnesioferrite-magnesiomagnetite series. Acta Geol Sin English Ed 72:382–391

    Google Scholar 

  • Zhu H, Chen SY (2003) Catalytic performance of magnesium ferrite for hydroxylation of 2,3,6-trimethylphenol. Chin J Catal 24:635–638

    Google Scholar 

Download references

Acknowledgements

We would like to thank Drs G.M. Partzsch (Heidelberg) and C.A. McCammon (Bayreuth) for help with Mössbauer spectroscopy. Our heartfelt thanks are also due to H. Kleinschmidt, I. Glass (Heidelberg), and E. Schmitt (Stuttgart) for technical support in the laboratories and Dr. K.D. Grevel and an anonymous reviewer who helped improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Klemme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemme, S., Ahrens, M. Low-temperature heat capacity of magnesioferrite (MgFe2O4). Phys Chem Minerals 32, 374–378 (2005). https://doi.org/10.1007/s00269-005-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0003-8

Keywords

Navigation