Skip to main content
Log in

The Efficacy and Safety of Intravenous Iron in Geriatric Hip Fracture Surgeries: A Systematic Review and Meta-Analysis

  • Scientific Review
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

With the increasing evidence provided by recent high-quality studies, the intravenous iron appears to be a reliable therapy for blood administration in geriatric patients with hip fractures. Here, this systematic review and meta-analysis were aimed to assess the effectiveness and safety of intravenous iron in geriatric patients sustaining hip fractures.

Methods

Potential pertinent literatures evaluating the effects of intravenous iron in the geriatric patients undergoing hip fractures were identified from Web of Science, PubMed, Embase, and Scopus. We performed a pairwise meta-analysis using fixed- and random-effects models, and the pooling of data was carried out by using RevMan 5.1.

Results

Four randomized controlled trials and four observational studies conform to inclusion criteria. The results of meta-analysis showed that intravenous iron reduced transfusion rates compared to the control group, yet the result did not reach statistical significance. The intravenous iron was related to lower transfusion volumes, shorter length of stay, and a reduced risk of nosocomial infections. And there was no significant difference in terms of the mortality and other complications between the treatment group and the control group.

Conclusion

Current evidence suggests that intravenous iron reduces the transfusion volume, length of hospital stay, and risk of nosocomial infections. It takes about 7 days for intravenous iron to elevate hemoglobin by 1 g/dl and about 1 month for 2 g/dl. The safety profile of intravenous iron is also reassuring, and additional high-quality studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733

    Article  CAS  Google Scholar 

  2. Zhang YW, Lu PP, Li YJ et al (2021) Prevalence, characteristics, and associated risk factors of the elderly with hip fractures: a cross-sectional analysis of NHANES 2005–2010. Clin Interv Aging 16:177–185

    Article  Google Scholar 

  3. Zhang YW, Cao MM, Li YJ et al (2022) Dietary protein intake in relation to the risk of osteoporosis in middle-aged and older individuals: a cross-sectional study. J Nutr Health Aging 26(3):252–258

    Article  CAS  Google Scholar 

  4. Zhang Y-W, Cao M-M, Li Y-J et al (2022) The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2047005

    Article  PubMed  Google Scholar 

  5. Zhang YW, Li YJ, Lu PP et al (2021) The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of “brain-gut-bone” axis. Food Funct 12(13):5703–5718

    Article  CAS  Google Scholar 

  6. Majumdar SR, Lier DA, Hanley DA et al (2017) Economic evaluation of a population-based osteoporosis intervention for outpatients with non-traumatic non-hip fractures: the “Catch a Break” 1i [type C] FLS. Osteoporos Int 28(6):1965–1977

    Article  CAS  Google Scholar 

  7. Zhang YW, Lu PP, Li YJ et al (2021) Low dietary choline intake is associated with the risk of osteoporosis in elderly individuals: a population-based study. Food Funct 12(14):6442–6451

    Article  CAS  Google Scholar 

  8. Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the European union: medical management, epidemiology and economic burden: a report prepared in collaboration with the international osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA). Arch Osteopor. https://doi.org/10.1007/s11657-013-0136-1

    Article  Google Scholar 

  9. Gombotz H, Rehak PH, Shander A et al (2007) Blood use in elective surgery: the Austrian benchmark study. Transfusion 47(8):1468–1480

    Article  Google Scholar 

  10. Montalvo JIG, Alarcón TA, Rodil BP et al (2008) Ortogeriatría en pacientes agudos (II). Aspectos clínicos. Revista Española de Geriatría y Gerontología 43(5):316–329. https://doi.org/10.1016/S0211-139X(08)73574-1

    Article  Google Scholar 

  11. Engoren M, Mitchell E, Perring P et al (2008) The effect of erythrocyte blood transfusions on survival after surgery for hip fracture. J Trauma 65(6):1411–1415

    PubMed  Google Scholar 

  12. Shokoohi A, Stanworth S, Mistry D et al (2012) The risks of red cell transfusion for hip fracture surgery in the elderly. Vox Sang 103(3):223–230

    Article  CAS  Google Scholar 

  13. Shander A, Knight K, Thurer R et al (2004) Prevalence and outcomes of anemia in surgery: a systematic review of the literature. Am J Med 116(Suppl 7A):58s–69s

    Article  Google Scholar 

  14. Brunskill SJ, Millette SL, Ali Shokoohi EC et al (2015) Red blood cell transfusion for people undergoing hip fracture surgery. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009699.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mueller MM, Van Remoortel H, Meybohm P et al (2019) Patient blood management: recommendations from the 2018 frankfurt consensus conference. JAMA 321(10):983–997

    Article  Google Scholar 

  16. Geneen LJ, Kimber C, Doree C et al (2022) Efficacy and safety of intravenous iron therapy for treating anaemia in critically ill adults: a rapid systematic review with meta-analysis. Transfus Med Rev 36(2):97–106. https://doi.org/10.1016/j.tmrv.2021.12.002

    Article  PubMed  Google Scholar 

  17. Neogi SB, Devasenapathy N, Singh R et al (2019) Safety and effectiveness of intravenous iron sucrose versus standard oral iron therapy in pregnant women with moderate-to-severe anaemia in India: a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Glob Health 7(12):e1706–e1716

    Article  Google Scholar 

  18. Aksan A, Işık H, Radeke HH et al (2017) Systematic review with network meta-analysis: comparative efficacy and tolerability of different intravenous iron formulations for the treatment of iron deficiency anaemia in patients with inflammatory bowel disease. Aliment Pharmacol Ther 45(10):1303–1318

    Article  CAS  Google Scholar 

  19. Becher PM, Schrage B, Benson L et al (2021) Phenotyping heart failure patients for iron deficiency and use of intravenous iron therapy: data from the Swedish heart failure registry. Eur J Heart Fail 23(11):1844–1854

    Article  CAS  Google Scholar 

  20. Jankowska EA, Tkaczyszyn M, Suchocki T et al (2016) Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. Eur J Heart Fail 18(7):786–795

    Article  CAS  Google Scholar 

  21. Hougen I, Collister D, Bourrier M et al (2018) Safety of intravenous iron in dialysis: a systematic review and meta-analysis. Clin J Am Soc Nephrol 13(3):457–467

    Article  CAS  Google Scholar 

  22. Brautaset Englund KV, Østby CM, Rolid K et al (2021) Intravenous iron supplement for iron deficiency in cardiac transplant recipients (IronIC): a randomized clinical trial. J Heart Lung Transplant 40(5):359–367

    Article  Google Scholar 

  23. Richards T, Baikady RR, Clevenger B et al (2020) Preoperative intravenous iron to treat anaemia before major abdominal surgery (PREVENTT): a randomised, double-blind, controlled trial. Lancet 396(10259):1353–1361

    Article  CAS  Google Scholar 

  24. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352(10):1011–1023

    Article  CAS  Google Scholar 

  25. Ganz T, Nemeth E (2006) Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol-Gastrointest Liver Physiol 290(2):G199–G203. https://doi.org/10.1152/ajpgi.00412.2005

    Article  CAS  PubMed  Google Scholar 

  26. Friedman AJ, Shander A, Martin SR et al (2015) Iron deficiency anemia in women: a practical guide to detection, diagnosis, and treatment. Obstet Gynecol Surv 70(5):342–353

    Article  Google Scholar 

  27. Parker MJ (2010) Iron supplementation for anemia after hip fracture surgery: a randomized trial of 300 patients. J Bone Joint Surg Am 92(2):265–269

    Article  Google Scholar 

  28. Chen R, Li L, Xiang Z et al (2021) Association of iron supplementation with risk of transfusion, hospital length of stay, and mortality in geriatric patients undergoing hip fracture surgeries: a meta-analysis. Eur Geriatr Med 12(1):5–15

    Article  Google Scholar 

  29. Shin HW, Park JJ, Kim HJ et al (2019) Efficacy of perioperative intravenous iron therapy for transfusion in orthopedic surgery: A systematic review and meta-analysis. PLoS ONE 14(5):e0215427

    Article  Google Scholar 

  30. Moppett IK, Rowlands M, Mannings AM et al (2019) The effect of intravenous iron on erythropoiesis in older people with hip fracture. Age Ageing 48(5):751–755

    Article  CAS  Google Scholar 

  31. Bielza R, Llorente J, Thuissard IJ et al (2021) Effect of intravenous iron on functional outcomes in hip fracture: a randomised controlled trial. Age Ageing 50(1):127–134

    Article  Google Scholar 

  32. Shamseer L, Moher D, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    Article  Google Scholar 

  33. Cumpston M, Li T, Page MJ et al (2019) Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of interventions. Cochrane Database Syst Rev 10:Ed000142

    PubMed  Google Scholar 

  34. Lo CK, Mertz D, Loeb M (2014) Newcastle-ottawa scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol 14:45

    Article  Google Scholar 

  35. Bernabeu-Wittel M, Romero M, Ollero-Baturone M et al (2016) Ferric carboxymaltose with or without erythropoietin in anemic patients with hip fracture: a randomized clinical trial. Transfusion 56(9):2199–2211

    Article  CAS  Google Scholar 

  36. Serrano-Trenas JA, Ugalde PF, Cabello LM et al (2011) Role of perioperative intravenous iron therapy in elderly hip fracture patients: a single-center randomized controlled trial. Transfusion 51(1):97–104

    Article  CAS  Google Scholar 

  37. Shah A, Chester-Jones M, Dutton SJ et al (2022) Intravenous iron to treat anaemia following critical care: a multicentre feasibility randomised trial. Br J Anaesth 128(2):272–282

    Article  CAS  Google Scholar 

  38. Rognoni C, Venturini S, Meregaglia M et al (2016) Efficacy and safety of ferric carboxymaltose and other formulations in iron-deficient patients: a systematic review and network meta-analysis of randomised controlled trials. Clin Drug Investig 36(3):177–194

    Article  CAS  Google Scholar 

  39. Nikolaou VS, Masouros P, Floros T et al (2021) Single dose of tranexamic acid effectively reduces blood loss and transfusion rates in elderly patients undergoing surgery for hip fracture a randomized controlled trial. Bone Joint J 103(b3):442–448

    Article  Google Scholar 

  40. Jang JH, Kim Y, Park S et al (2020) Efficacy of intravenous iron treatment for chemotherapy-induced anemia: a prospective phase II pilot clinical trial in South Korea. PLoS Med 17(6):e1003091

    Article  CAS  Google Scholar 

  41. Derman R, Roman E, Modiano MR et al (2017) A randomized trial of iron isomaltoside versus iron sucrose in patients with iron deficiency anemia. Am J Hematol 92(3):286–291

    Article  CAS  Google Scholar 

  42. Youssef LA, Spitalnik SL (2017) Iron: a double-edged sword. Transfusion 57(10):2293–2297

    Article  Google Scholar 

  43. Shah AA, Donovan K, Seeley C et al (2021) Risk of infection associated with administration of intravenous iron: a systematic review and meta-analysis. JAMA Netw Open 4(11):e2133935

    Article  Google Scholar 

  44. Nielsen OH, Ainsworth M, Coskun M et al (2015) Management of iron-deficiency anemia in inflammatory bowel disease: a systematic review. Med (Baltim) 94(23):e963

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M-M C and Y-F R designed this current study. M-M C, J-Y C, Y-W Z, R-W S, WG, and Y-K Z contributed to data collection and interpretation. M-MC, J-Y C, and Y-W Z wrote the manuscript. All the authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yun-Feng Rui.

Ethics declarations

Conflict of interest

The authors declared that they have no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, MM., Chi, JY., Zhang, YW. et al. The Efficacy and Safety of Intravenous Iron in Geriatric Hip Fracture Surgeries: A Systematic Review and Meta-Analysis. World J Surg 46, 2595–2606 (2022). https://doi.org/10.1007/s00268-022-06690-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-022-06690-y

Navigation