Skip to main content
Log in

Expression of Vascular Endothelial Growth Factor and Presence of Angiovascular Cells in Tissues from Different Thyroid Disorders

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Vascular endothelial growth factor (VEGF) is involved in tumor angiogenesis and other pathophysiological processes.

Materials and methods

We studied the localization of VEGF in human thyroid tissues to clarify its involvement in proliferative processes in a variety of thyroid disorders. Immunohistochemical analysis using purified rabbit polyclonal anti-human VEGF or anti-human CD34 antibody and a streptavidin–biotin peroxidase complex detection system was performed on 58 tissue specimens from 53 patients with different thyroid disorders and 5 normal thyroid glands.

Results

Vascular endothelial growth factor was not detected in normal thyroid follicular cells. However, some thyroid tumor cells expressed VEGF in the cytoplasm (papillary carcinoma, 10/18; follicular carcinoma, 1/3; medullary carcinoma, 2/2; follicular adenoma, 3/11; adenomatous goiter, 2/4). In benign follicular adenoma and adenomatous goiter, weak expression of VEGF was found in small areas of the tumor, whereas in malignant thyroid tumors, it was strongly expressed in many cells. However, VEGF was not expressed in anaplastic carcinoma, malignant lymphoma, or Graves’ disease. Angiovascular cells stained with CD34 antibody in tissues from different thyroid disorders reflected statistically significant differences in papillary carcinoma, follicular adenoma, and Graves’ disease compared with normal thyroids, and such cells showed a trend toward increases in medullary carcinoma and adenomatous goiter. In contrast, low vascularity was observed in anaplastic carcinoma, malignant lymphoma, and follicular carcinoma.

Conclusions

Because VEGF probably functions as a hypoxia-inducible angiogenic factor, overexpression of this mediator, concomitant with hypervascularity, may be induced more strongly in malignant thyroid tumors, which need more oxygen to proliferate, than in benign follicular tumors. However, neither VEGF nor CD34 was expressed in anaplastic thyroid carcinoma, which is an extremely poorly differentiated malignant tumor. CD34 but not VEGF was expressed in the hyperplastic thyroid tissues of Graves’ disease composed of nontransformed cells. Thus, the expression of VEGF concomitant with CD34 is suggested to reflect both the transformation and differentiation state of malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858

    Article  CAS  PubMed  Google Scholar 

  2. Rosenthal RA, Megyesi JF, Henzei WJ, Ferrara N, Folkman J (1990) Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor. Growth Factor 4:53–59

    Article  CAS  Google Scholar 

  3. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    Article  CAS  PubMed  Google Scholar 

  4. De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991

    Article  PubMed  Google Scholar 

  5. Shibuya M (1995) Role of VEGF-Flt receptor system in normal and tumor angiogenesis. Adv Cancer Res 67:281–316

    Article  CAS  PubMed  Google Scholar 

  6. Peters KG, De Vries C, Williams LT (1993) Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci USA 90:8915–8919

    Article  CAS  PubMed  Google Scholar 

  7. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  CAS  PubMed  Google Scholar 

  8. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  CAS  PubMed  Google Scholar 

  9. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Dvorak HF, Senger DR (1993) Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 143:1255–1262

    CAS  PubMed  Google Scholar 

  10. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  CAS  PubMed  Google Scholar 

  11. Toi M, Hoshina S, Takayanagi T, Tominaga T (1994) Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 85:1045–1049

    CAS  PubMed  Google Scholar 

  12. Kobayashi T, Himeno Y, Hotta K, Nagata M, Itoh A, Nagasaka A, Oda N, Senda T, Itoh M (2005) The expression of vascular endothelial growth factor (VEGF) in thyroid tissues of various thyroid diseases. Bull Fujita Med Soc 29:77–78

    CAS  Google Scholar 

  13. de la Torre NG, Buley I, Wass JA, Turner HE (2006) Angiogenesis and lymphangiogenesis in thyroid proliferative lesions: relationship to type and tumour behaviour. Endocr Relat Cancer 13:931–944

    Article  Google Scholar 

  14. Ramsden D (2000) Angiogenesis in the thyroid gland. J Endocrinol 166:475–480

    Article  CAS  PubMed  Google Scholar 

  15. Tuttle RM, Fleisher M, Francis GL, Robbins RJ (2002) Serum vascular endothelial growth factor levels are elevated in metastatic differentiated thyroid cancer but not increased by short-term TSH stimulation. Clin Endocrinol Metab 87:1737–1742

    Article  CAS  Google Scholar 

  16. Iitaka M, Miura S, Yamanaka K, Kawasaki S, Kitahama S, Kawakami Y, Kakinuma S, Oosuga I, Wada S, Katayama S (1998) Increased serum vascular endothelial growth factor levels and intrathyroidal vascular area in patients with Graves’ disease and Hashimoto’s thyroiditis. J Clin Endocrinol Metab 83:3908–3912

    Article  CAS  PubMed  Google Scholar 

  17. Fenton C, Patel A, Dinauer C, Robie DK, Tuttle RM, Francis GL (2000) The expression of vascular endothelial growth factor and the type 1 vascular endothelial growth factor receptor correlate with the size of papillary thyroid carcinoma in children and young adults. Thyroid 10:349–357

    Article  CAS  PubMed  Google Scholar 

  18. Wang JF, Milosveski V, Schramek C, Fong GH, Becks GP, Hill DJ (1998) Presence and possible role of vascular endothelial growth factor in thyroid cell growth and function. J Endocrinol 157:5–12

    Article  CAS  PubMed  Google Scholar 

  19. Soh EY, Duh QY, Sobhi SA, Young DM, Epstein HD, Wong MG, Garcia YK, Min YD, Grossman RF, Siperstein AE, Clark OH (1997) Vascular endothelial growth factor expression is higher in differentiated thyroid cancer than in normal or benign thyroid. J Clin Endocrinol Metab 82:3741–3747

    Article  CAS  PubMed  Google Scholar 

  20. Katoh R, Miyagi E, Kawaoi A, Hemmi A, Komiyama A, Oyama T, Shibuya M (1999) Expression of vascular endothelial growth factor (VEGF) in human thyroid neoplasms. Hum Pathol 30:891–897

    Article  CAS  PubMed  Google Scholar 

  21. Lennard CM, Patel A, Wilson J, Reinhardt B, Tuman C, Fenton C, Blair E, Francis GL, Tuttle RM (2001) Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer. Surgery 129:552–558

    Article  CAS  PubMed  Google Scholar 

  22. Klein M, Picard E, Vignaud JM, Marie B, Bresler L, Toussaint B, Weryha G, Duprez A, Leclere J (1999) Vascular endothelial growth factor gene and protein: strong expression in thyroiditis and thyroid carcinoma. J Endocrinol 161:41–49

    Article  CAS  PubMed  Google Scholar 

  23. Viglietto G, Maglione D, Rambaldi M, Cerutti J, Romano A, Trapasso F, Fedele M, Ippolito P, Chiappetta G, Botti G, Fusco A, Persico G (1995) Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PIGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 11:1569–1579

    CAS  PubMed  Google Scholar 

  24. Fellmer PT, Sato K, Tanaka R, Okamoto T, Kato Y, Kobayashi M, Shibuya M, Obara T (1999) Vascular endothelial growth factor-C gene expression in papillary and follicular thyroid carcinomas. Surgery 126:1056–1062

    Article  CAS  PubMed  Google Scholar 

  25. Bunone G, Vigneri P, Mariani L, Buto S, Collini P, Pilotti S, Pierotti MA, Bongarzone I (1999) Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 155:1967–1976

    CAS  PubMed  Google Scholar 

  26. Klein M, Vignaud JM, Hennequin V, Toussaint B, Bresler L, Plenat F, Leclere J, Duprez A, Weryha G (2001) Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab 86:656–658

    Article  CAS  PubMed  Google Scholar 

  27. Nagura S, Kato R, Miyagi E, Shibuya M, Kawaoi A (2001) Expression of vascular endothelial growth factor (VEGF) and VEGF receptor-1 (Flt-1) in Graves’ disease possibly correlated with increased vascular density. Hum Pathol 32:10–17

    Article  CAS  PubMed  Google Scholar 

  28. Viglietto G, Romano A, Manzo G, Chiappetta G, Paoletti I, Califano D, Galati MG, Mauriello V, Bruni P, Lago CT, Fusco A, Persico MG (1997) Upregulation of the angiogenic factors P1GF, VEGF and their receptors (Flt-1, Flk-1/KDR) by TSH in cultured thyrocytes and in the thyroid gland of thiouracil-fed rats suggests a TSH-dependent paracrine mechanism for goiter hypervascularization. Oncogene 15:2687–2698

    Article  CAS  PubMed  Google Scholar 

  29. Sato K, Yamazaki K, Shizume K, Kanaji Y, Obara T, Ohsumi K, Demura H, Yamaguchi S, Shibuya M (1995) Stimulation by thyroid-stimulating hormone and Graves’ immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo. J Clin Invest 96:1295–1302

    Article  CAS  PubMed  Google Scholar 

  30. Soh EY, Sobhi SA, Wong MG, Siperstein AE, Clark OH, Duh QY (1996) Thyroid-stimulating hormone promotes the secretion of vascular endothelial growth factor in thyroid cancer cell lines. Surgery 120:944–947

    Article  CAS  PubMed  Google Scholar 

  31. Potey M, Delemer B, Bellon G, Martiny L, Pluot M, Hage B (1999) Immunohistochemical study of thrombospondin and its receptors B3 and CD36 in normal thyroid and in thyroid tumours. J Clin Pathol 52:895–900

    Article  Google Scholar 

  32. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor–induced angiogenesis suppresses tumor growth in vivo. Nature 362:841–844

    Article  CAS  PubMed  Google Scholar 

  33. Kebebew E, Wong MG, Siperstein AE, Duh QY, Clark OH (1999) Phenylacetate inhibits growth and vascular endothelial growth factor secretion in human thyroid carcinoma cells and modulates their differentiated function. J Clin Endocrinol Metab 84:2840–2847

    Article  CAS  PubMed  Google Scholar 

  34. Soh EY, Eigelberger MS, Kim KJ, Wong MG, Young DM, Clark OH, Duh QY (2000) Neutralizing vascular endothelial growth factor activity inhibits thyroid cancer growth in vivo. Surgery 128:1059–1066

    Article  CAS  PubMed  Google Scholar 

  35. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Iwase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, A., Iwase, K., Jimbo, S. et al. Expression of Vascular Endothelial Growth Factor and Presence of Angiovascular Cells in Tissues from Different Thyroid Disorders. World J Surg 34, 242–248 (2010). https://doi.org/10.1007/s00268-009-0344-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-009-0344-4

Keywords

Navigation