Skip to main content
Log in

Effect of the Combination of Fibrin Glue and Growth Hormone on Intestinal Anastomoses in a Pig Model of Traumatic Shock Associated with Peritonitis

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Intra-abdominal sepsis and hemorrhagic shock have been found to impair the healing of intestinal anastomoses. The present study examined whether fibrin glue (FG) and recombinant human growth hormone (GH) can improve intestinal primary anastomotic healing in a pig model of traumatic shock associated with peritonitis. Further, the study was designed to investigate the probable mechanism of these agents.

Methods

Female anesthetized pigs were divided into five groups. Group sham (n = 7), pigs without traumatic shock had small bowel resection anastomoses; group control (n = 14), pigs had bowel resection anastomoses 24 h after abdominal gunshot plus exsanguination/resuscitation; group FG (n = 14); group GH (n = 14); group FG/GH (n = 14), pigs received FG, recombinant GH, or both, respectively. Recombinant GH was given daily for 7 days. Blood samples were collected daily for measurement of interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α levels. Investigations also included adhesion formation, anastomotic bursting pressure, tensile strength, hydroxyproline (HP) content, myeloperoxidase (MPO), tumor necrosis factor (NF)-κB activity, and histology analysis 10 days later. A second experiment (n = 20 subjects assigned to each of the five groups) was designed to study survival during the first 20 postoperative days.

Results

Traumatic shock associated with peritonitis led to significant decreases in intestinal anastomotic bursting pressures, tensile strengths, and tissue hydroxyproline content, along with severe adhesion formation, increases in MPO activity and NF-κB activity, and plasma levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). Both FG and recombinant GH treatment led to early significant increases in plasma levels of TNF-α and IL-6. At the same time, FG alone, unlike recombinant GH alone, led to significant increases in anastomotic bursting pressures, tensile strength, and tissue HP content, along with decreases in anastomotic MPO and NF-κB activity and later plasma levels of TNF-a and IL-6. The FG group also developed more marked neoangiogenesis and collagen deposition on histology analysis. However, FG and recombinant GH synergistically effected improved anastomotic healing, abolishing the infaust effects promoted by recombinant GH. Adhesion formation after intestinal anastomosis could not be lowered by FG alone or by the combination of FG and recombinant GH. Both FG alone and FG/GH, in contrast to GH alone and control treatment, significantly prolonged the survival time of experimental animals.

Conclusions

We found that FG, but not recombinant GH, could lower the risk of anastomotic leakage, improve intestinal anastomotic healing, and prolong survival in a pig model of traumatic shock associated with peritonitis. Both FG and recombinant GH synergistically effected improved intestinal anastomotic healing. It was suggested that GH could be used locally to promote intestinal anastomotic healing in intra–abdominal peritonitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Busić Z, Lovrić Z, Amić E et al (2004) Small bowel injuries in penetrating abdominal trauma during war: ten-year follow-up findings. Mil Med 169:721–722

    PubMed  Google Scholar 

  2. Adesanya AA, Ekanem EE (2004) A ten-year study of penetrating injuries of the colon. Dis Colon Rectum 47:2169–2177

    Article  PubMed  Google Scholar 

  3. Rico RM, Repayment R, Burns AL et al (2002) The effect of sepsis on wound healing. J Surg Res 102:193–197

    Article  PubMed  Google Scholar 

  4. Kologlu M, Yorganci K, Renda N et al (2000) Effect of local and remote ischemia–reperfusion injury on healing of colonic anastomoses. Surgery 128:99–104

    Article  PubMed  CAS  Google Scholar 

  5. Ahrendt GM, Tantry US, Barbul A (1996) Intra-abdominal sepsis impairs colonic reparative collagen synthesis. Am J Surg 171:102–108

    Article  PubMed  CAS  Google Scholar 

  6. Yarimkaya A, Apaydin B, Unal E et al (2003) Effects of recombinant human growth hormone and nandrolone phenylpropionate on the healing of ischemic colon anastomosis in rats. Dis Colon Rectum 46(12):1690–1697

    Article  PubMed  Google Scholar 

  7. Li Y, Bao Y, Jiang T et al (2006) Effect of the combination of fibrin glue and growth hormone on incomplete intestinal anastomoses in a rat model of intra-abdominal sepsis. J Surg Res 131:111–117

    Article  PubMed  Google Scholar 

  8. Wheeless CR Jr, Zanagnolo V, Bowers D et al (1998) The effect of growth hormone on the bursting strength of ileal anastomotic segments in radiation-injured rat bowel. Gynecol Oncol 70:121–122

    Article  PubMed  CAS  Google Scholar 

  9. Jeay S, Sonenshein GE, Kelly PA et al (2001) Growth hormone exerts antiapoptotic and proliferative effects through two different pathways involving nuclear factor-κB and phospha-tidylinositol 3-kinase. Endocrinology 142:147–156

    Article  PubMed  CAS  Google Scholar 

  10. Bird MA, Black D, Lange PA et al (2003) NF-κB inhibition decreases hepatocyte proliferation but does not alter apoptosis in obstructive jaundice. J Surg Res 114:110–117

    Article  PubMed  CAS  Google Scholar 

  11. Abraham E (2000) NF-κB activation. Crit Care Med 28(4 Suppl):N100–N104

    Article  PubMed  CAS  Google Scholar 

  12. Sha WC (1998) Regulation of immune responses by NF-κB/Rel transcription factor. J Exp Med 187:143–146

    Article  PubMed  CAS  Google Scholar 

  13. Zhang G, Ghosh S (2000) Molecular mechanisms of NF-κB activation induced by bacterial lipopoly-saccharide through Toll-like receptors. J Endotoxin Res 6:453–457

    Article  PubMed  CAS  Google Scholar 

  14. Condliffe AM, Kitchen E, Chilvers ER (1998) Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin Sci 94:461–471

    PubMed  CAS  Google Scholar 

  15. Takala J, Ruokonen E, Webster NR et al (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341:785–792

    Article  PubMed  CAS  Google Scholar 

  16. Liu Z, Yu Y, Jiang Y et al (2002) Growth hormone increases circulating neutrophil activation and provokes lung microvascular injury in septic peritonitis rats. J Surg Res 105:195–199

    Article  PubMed  CAS  Google Scholar 

  17. Kanellos I, Mantzoros I, Demetriades H et al (2004) Healing of colon anastomoses covered with fibrin glue after immediate postoperative intraperitoneal administration of 5-fluorouracil. Dis Colon Rectum 47:510–515

    Article  PubMed  CAS  Google Scholar 

  18. Houston KA, Rotstein OD (1988) Fibrin sealant in high-risk colonic anastomoses. Arch Surg 123:230–234

    PubMed  CAS  Google Scholar 

  19. van der Ham AC, Kort WJ, Weijma IM et al (1991) Effect of fibrin sealant on the healing colonic anastomosis in the rat. Br J Surg 78:49–53

    Article  PubMed  Google Scholar 

  20. Liu FN, Chen YM, Cai XM et al (1999) Hydroxyproline content of tissue measured by high-performance liquid chromatography. Nutr Clin Pract 6:216–217

    Google Scholar 

  21. Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87:1344

    CAS  Google Scholar 

  22. Tian J, Lin X, Guan R et al (2004) The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms. Anesth Analg 98:768–774

    Article  PubMed  CAS  Google Scholar 

  23. Phillips JD, Kim CS, Fonkalsrud EW et al (1992) Effects of chronic corticosteroids and vitamin A on the healing of intestinal anastomoses. Am J Surg 163:71–77

    Article  PubMed  CAS  Google Scholar 

  24. Novell JR, Lewis AA (1990) Preoperative observation of marginal artery bleeding: a predictor of anastomotic leakage. Br J Surg 77:137–138

    Article  PubMed  CAS  Google Scholar 

  25. Jonsson K, Jensen JA, Goodson III WH et al (1991) Tissue oxygenation, anemia and perfusion in relation to wound healing in surgical patients. Ann Surg 214:605–613

    Article  PubMed  CAS  Google Scholar 

  26. Demetriades D, Murray JA, Chan L, the Committee on Multicenter Clinical Trials et al (2001) American Association for the Surgery of Trauma. Penetrating colon injuries requiring resection: diversion or primary anastomosis? An AAST prospective multicenter study. J Trauma 50:765–775

    Article  PubMed  CAS  Google Scholar 

  27. Flint LM, Vitale GC, Richardson D et al (1981) The injured colon: relationships of management to complications. Ann Surg 193:619–623

    Article  PubMed  CAS  Google Scholar 

  28. Johansson L, Norrby K, Lennquist S (1988) Fluorescein angiography for evaluation of intestinal intramural haemorrhage in abdominal missile injury. J Trauma 28(1 Suppl):S194–S197

    PubMed  CAS  Google Scholar 

  29. Olofsson P, Abu-Zidan FM, Wang J et al (2006) The effects of early rapid control of multiple bowel perforations after high-energy trauma to the abdomen: implications for damage control surgery. J Trauma 61:185–191

    Article  PubMed  Google Scholar 

  30. Bonanomi G, Prince JM, McSteen F et al (2004) Sealing effect of fibrin glue on the healing of gastrointestinal anastomoses: Implications for the endoscopic treatment of leaks. Surg Endosc 18:1620–1624

    PubMed  CAS  Google Scholar 

  31. Lerner R, Binur NS (1990) Current status of surgical adhesives. J Surg Res 48:165–181

    Article  PubMed  CAS  Google Scholar 

  32. Hjortrup A, Nordkild P, Christensen T et al (1989) Rectal anastomosis with application of luminal fibrin adhesive in the rectum of dogs. An experimental study. Dis Colon Rectum 32:422–425

    Article  PubMed  CAS  Google Scholar 

  33. Haukipuro KA, Hulkko OA, Alavaikko MJ et al (1988) Sutureless colon anastomosis with FG in the rat. Dis Colon Rectum 31:601–604

    Article  PubMed  CAS  Google Scholar 

  34. van der Ham AC, Kort WJ, Weijma IM et al (1993) Transient protection of incomplete colonic anastomoses with fibrin sealant: an experimental study in the rat. J Surg Res 55:256–260

    Article  PubMed  Google Scholar 

  35. Li Y, Bao Y, Jiang T et al (2007) Combination of fibrin glue with growth hormone augments healing of incomplete intestinal anastomoses in a rat model of intra-abdominal sepsis: a dynamic study. J Invest Surg 20:301–306

    Article  PubMed  Google Scholar 

  36. van der Ham AC, Kort WJ, Weijma IM et al (1992) Healing of ischemic colonic anastomosis: fibrin sealant does not improve wound healing. Dis Colon Rectum 35:884–891

    Article  PubMed  Google Scholar 

  37. Herndon DN, Barrow RE, Kunkel KR et al (1990) Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg 212:424–431

    Article  PubMed  CAS  Google Scholar 

  38. Raschke M, Rasmussen MH, Govender S et al (2007) Effects of growth hormone in patients with tibial fracture: a randomised, double-blind, placebo-controlled clinical trial. Eur J Endocrinol 156:341–351

    Article  PubMed  CAS  Google Scholar 

  39. Zaizen Y, Ford EG, Costin G et al (1990) Stimulation of wound bursting strength during protein malnutrition. J Surg Res 49:333–336

    Article  PubMed  CAS  Google Scholar 

  40. Harrison LE, Port JL, Hochwald S et al (1995) Perioperative growth hormone improves wound healing and immunologic function in rats receiving adriamycin. J Surg Res 58:646–650

    Article  PubMed  CAS  Google Scholar 

  41. Stamm J, Cooney RN, Maish GO et al (2000) Growth hormone does not attenuate the inhibitory effects of sepsis on wound healing. Wound Repair Regen 8:103–109

    Article  PubMed  CAS  Google Scholar 

  42. Uronen-Hansson H, Allen ML, Lichtarowicz-Krynska E et al (2003) Growth hormone enhances proinflammatory cytokine production by monocytes in whole blood. Growth Horm IGF Res 13:282–286

    Article  PubMed  CAS  Google Scholar 

  43. Elsasser TH, Fayer R, Rumsey TS et al (1994) Recombinant bovine somatotropin blunts plasma tumor necrosis factor-α, cortisol, and thromboxane-B2 responses to endotoxin in vivo. Endocrinology 134:1082–1088

    Article  PubMed  CAS  Google Scholar 

  44. Inoue T, Saito H, Fukushima RT et al (1995) Growth hormone and insulin-like growth factor I enhance host defense in a murine sepsis model. Arch Surg 130:1115–1122

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Science Foundation of Jiangsu (BK2005432). The authors are grateful to Dr. Genbao Feng for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Wang, J., Zhang, W. et al. Effect of the Combination of Fibrin Glue and Growth Hormone on Intestinal Anastomoses in a Pig Model of Traumatic Shock Associated with Peritonitis. World J Surg 33, 567–576 (2009). https://doi.org/10.1007/s00268-008-9889-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-008-9889-x

Keywords

Navigation