Skip to main content
Log in

Lack of Association between Microsatellite Instability and Benign Adrenal Tumors

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

The adrenal gland may give rise to pheochromocytomas, which are catecholamine-producing tumors originating from the adrenal medulla, or to adrenocortical tumors, which derive from the adrenocortical cortex and may be secreting or not. The genetic mechanisms underlying the formation of these tumors include somatic mutations in susceptibility genes, especially in the familial forms, and allelic loss, especially in chromosome 1.

Aim

The aim of this study was to investigate a third genetic mechanism by evaluating microsatellite instability using the reference markers (Bat25, Bat26, D2S123, D5S346, D17S250) validated by the National Cancer Institute. Microsatellite loci were analyzed in 32 benign tumors, including 11 pheochromocytomas and 21 adrenocortical tumors, in patients with and without familial syndrome.

Results

The different alleles of microsatellite loci were reliably detected by DNA fragments analysis, whereas data obtained after melting-point analysis on the Lightcycler were inconsistent. No microsatellite instability was detected in any tumor. One patient with a unilateral pheochromocytoma showed a loss of heterozygosity for D17S250. A second patient with a MEN-2A syndrome and a two-sided pheochromocytoma exhibited a loss of heterozygosity for D2S123 in the right tumor only and a retention of heterozygosity for all markers in the left tumor.

Conclusions

These results suggest that microsatellite instability, evaluated by the five reference markers of the National Cancer Institute, is not a feature of benign adrenal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Eng C, Crossey PA, Mulligan LM, et al. Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet 1995;32:934–937

    Article  PubMed  CAS  Google Scholar 

  2. Bar M, Friedman E, Jakobovitz O, et al. Sporadic phaeochromocytomas are rarely associated with germline mutations in the von Hippel-Lindau and RET genes. Clin Endocrinol 1997;47:707–712

    Article  CAS  Google Scholar 

  3. Rodien P, Jeunemaitre X, Dumont C, et al. Genetic alterations of the RET proto-oncogene in familial and sporadic pheochromocytomas. Horm Res 1997;47:263–268

    Article  PubMed  CAS  Google Scholar 

  4. Benn DE, Dwight T, Richardson AL, et al. Sporadic and familial pheochromocytomas are associated with loss of at least two discrete intervals on chromosome 1p. Cancer Res 2000;15:7048–7051

    Google Scholar 

  5. Opocher G, Schiavi F, Vettori A, et al. Fine analysis of the short arm of chromosome 1 in sporadic and familial pheochromocytoma. Clin Endocrinol 2003;59:707–715

    Article  CAS  Google Scholar 

  6. Edstrom Elder E, Nord B, Carling T, et al. Loss of heterozygosity on the short arm of chromosome 1 in pheochromocytoma and abdominal paraganglioma. World J Surg 2002;26:965–971

    Article  PubMed  Google Scholar 

  7. Carling T, Du Y, Fang W, et al. Intragenic allelic loss and promoter hypermethylation of the RIZI1 tumor suppressor gene in parathyroid tumors and pheochromocytomas. Surgery 2003;134:932–939

    Article  PubMed  Google Scholar 

  8. Geli J, Nord B, Frisk T, et al. Deletions and altered expression of the RIZ1 tumour suppressor gene in 1p36 in pheochromocytomas and abdominal paragangliomas. Int J Oncol 2005;26:1385–1391

    PubMed  CAS  Google Scholar 

  9. Edstrom E, Mahlamaki E, Nord B, et al. Comparative genomic hybridization reveals frequent losses of chromosomes 1p and 3q in pheochromocytomas and abdominal paragangliomas, suggesting a common genetic etiology. Am J Pathol 2000;156:651–659

    PubMed  CAS  Google Scholar 

  10. Bertherat J, Gimenez-Roqueplo AP. New insights in the genetics of adrenocortical tumors, pheochromocytomas and paragangliomas. Horm Metab Res 2005;37:384–390

    Article  PubMed  CAS  Google Scholar 

  11. Sidhu S, Gicquel C, Bambach CP, et al. Clinical and molecular aspects of adrenocortical tumourigenesis. Aust N Z J Surg 2003;73:727–738

    Article  Google Scholar 

  12. Kloor M, von Knebel, Doeberitz M, et al. Molecular testing for microsatellite instability and its value in tumor characterization. Expert Rev Mol Diagn 2005;5:599–611

  13. Lawes DA, SenGupta S, Boulos PB. The clinical importance and prognostic implications of microsatellite instability in sporadic cancer. Eur J Surg Oncol 2003;29:201–212

    Article  PubMed  CAS  Google Scholar 

  14. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349:247–257

    Article  PubMed  CAS  Google Scholar 

  15. Kaneki E, Oda Y, Ohishi Y, et al. Frequent microsatellite instability in synchronous ovarian and endometrial adenocarcinoma and its usefulness for differential diagnosis. Hum Pathol 2004;35:1484–1493

    Article  PubMed  CAS  Google Scholar 

  16. Musulen E, Moreno V, Reyes G, et al. Standardized approach for microsatellite instability detection in gastric carcinomas. Hum Pathol 2004;35:335–342

    Article  PubMed  CAS  Google Scholar 

  17. Chen Y, Wang J, Fraig MM, et al. Defects of DNA mismatch repair in human prostate cancer. Cancer Res 2001;61:4112–4121

    PubMed  CAS  Google Scholar 

  18. Hartmann A, Zanardo L, Bocker-Edmonston T, et al. Frequent microsatellite instability in sporadic tumors of the upper urinary tract. Cancer Res 2002;62:6796–6802

    PubMed  CAS  Google Scholar 

  19. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58:5248–5257

    PubMed  CAS  Google Scholar 

  20. Dietmaier W, Hofstadter F. Detection of microsatellite instability by real time PCR and hybridization probe melting point analysis. Lab Invest 2001;81:1453–1456

    PubMed  CAS  Google Scholar 

  21. Neumann HP, Pawlu C, Peczkowska M, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations J Am Med Assoc 2004;292:943–951

    Article  CAS  Google Scholar 

  22. Sood AK, Holmes R, Hendrix MJ, et al. Application of the National Cancer Institute international criteria for determination of microsatellite instability in ovarian cancer. Cancer Res 2001;61:4371–4374

    PubMed  CAS  Google Scholar 

  23. Rugge M, Bersani G, Bertorelle R, et al. Microsatellite instability and gastric non-invasive neoplasia in a high risk population in Cesena, Italy. J Clin Pathol 2005;58:805–810

    Article  PubMed  CAS  Google Scholar 

  24. Saetta AA, Gigelou F, Papanastasiou PI, et al. High-level microsatellite instability is not involved in gallbladder carcinogenesis. Exp Mol Pathol 2006;80:67–71

    PubMed  CAS  Google Scholar 

  25. Mallya SM, Gallagher JJ, Arnold A. Analysis of microsatellite instability in sporadic parathyroid adenomas. J Clin Endocrinol Metab 2003;88:1248–1251

    Article  PubMed  CAS  Google Scholar 

  26. Pecina-Slaus N, Nikuseva-Martic T, Gall-Troselj K, et al. Replication error-positive samples found in pheochromocytomas. In Vivo 2005;19:359–365

    PubMed  CAS  Google Scholar 

  27. Dietmaier W, Wallinger S, Bocker T, et al. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 1997;57:4749–4756

    PubMed  CAS  Google Scholar 

  28. Bocker T, Diermann J, Friedl W, et al. Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res 1997;57:4739–4743

    PubMed  CAS  Google Scholar 

  29. Zhou XP, Hoang JM, Cottu P, et al. Allelic profiles of mononucleotide repeat microsatellites in control individuals and in colorectal tumors with and without replication errors. Oncogene 1997;15:1713–1718

    Article  PubMed  CAS  Google Scholar 

  30. Hoang JM, Cottu PH, Thuille B, et al. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res 1997;57:300–303

    PubMed  CAS  Google Scholar 

  31. Pyatt R, Chadwick RB, Johnson CK, et al. Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Am J Pathol 1999;155:349–353

    PubMed  CAS  Google Scholar 

  32. Luqmani YA, Mathew M. Allelic variation of BAT-25 and BAT-26 mononucleotide repeat loci in tumours from a group of young women with breast cancer. Int J Oncol 2004;25:771–775

    PubMed  CAS  Google Scholar 

  33. Kim HS, Lee BL, Woo DK, et al. Assessment of markers for the identification of microsatellite instability phenotype in gastric neoplasms. Cancer Lett 2001;164:61–68

    Article  PubMed  CAS  Google Scholar 

  34. Loukola A, Eklin K, Laiho P, et al. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 2001;61:4545–4549

    PubMed  CAS  Google Scholar 

  35. Suraweera N, Duval A, Reperant M, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 2002;123:1804–1811

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Anne Schneider (Laboratoire de Biochimie, Hôpital de Haute Pierre, Strasbourg) for valuable discussions and for kindly providing DNA from MSI-positive colon carcinomas. We thank Olfert Landt from Tib-Molbiol, Berlin, Germany, for helpful discussions and recommendations concerning the Hyprobes/FRET technology. This work was supported by a grant from Ligue Contre le Cancer, Comité Départemental de Meurthe et Moselle.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fares Namour MD, PhD or Laurent Brunaud MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namour, F., Ayav, A., Lu, X. et al. Lack of Association between Microsatellite Instability and Benign Adrenal Tumors. World J. Surg. 30, 1240–1246 (2006). https://doi.org/10.1007/s00268-005-0471-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-005-0471-5

Keywords

Navigation