Skip to main content

Advertisement

Log in

Climatic-Induced Shifts in the Distribution of Teak (Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Modelling the future suitable climate space for tree species has become a widely used tool for forest management planning under global climate change. Teak (Tectona grandis) is one of the most valuable tropical hardwood species in the international timber market, and natural teak forests are distributed from India through Myanmar, Laos and Thailand. The extents of teak forests are shrinking due to deforestation and the local impacts of global climate change. However, the direct impacts of climate changes on the continental-scale distributions of native and non-native teak have not been examined. In this study, we developed a species distribution model for teak across its entire native distribution in tropical Asia, and its non-native distribution in Bangladesh. We used presence-only records of trees and twelve environmental variables that were most representative for current teak distributions in South and Southeast Asia. MaxEnt (maximum entropy) models were used to model the distributions of teak under current and future climate scenarios. We found that land use/land cover change and elevation were the two most important variables explaining the current and future distributions of native and non-native teak in tropical Asia. Changes in annual precipitation, precipitation seasonality and annual mean actual evapotranspiration may result in shifts in the distributions of teak across tropical Asia. We discuss the implications for the conservation of critical teak habitats, forest management planning, and risks of biological invasion that may occur due to its cultivation in non-native ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arino O, Ramos Perez J, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E (2012) Global land cover map for 2009 (GlobCover 2009). European Space Agency & Université Catholique de Louvain. doi:10.1594/PANGAEA.787668

  • Ashton MS, Goodale UM, Bawa KS, Ashton PS, Neidel JD (2014) Restoring working forests in human dominated landscapes of tropical South Asia: an introduction. Forest Ecol Manag 329:335–339

    Article  Google Scholar 

  • Austin M, Belbin L, Meyers J, Doherty M, Luoto M (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol Modell 199(2):197–216

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Leishman MR, Hughes L, Downey PO (2014) How can knowledge of the climate niche inform the weed risk assessment process? A case study of Chrysanthemoides monilifera in Australia. Divers Distrib 20(6):613–625

    Article  Google Scholar 

  • Bermejo I, Canellas I, San Miguel A (2004) Growth and yield models for teak plantations in Costa Rica. Forest Ecol Manag 189(1):97–110

    Article  Google Scholar 

  • Broxton PD, Zeng X, Scheftic W, Troch PA (2014) A MODIS-based global 1-km maximum green vegetation fraction dataset. J Appl Meteorol Climatol 53(8):1996–2004

    Article  Google Scholar 

  • Bunyavejchewin S (1983) Analysis of the tropical dry deciduous forest of Thailand: I. Characteristics of the dominance-types. Nat Hist Bull Siam Soc 31(2):109–122

    Google Scholar 

  • Champion S, Seth S (1968) A revised study of the forest types of India. Manager of Publications, Delhi

    Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model – HadGEM2. Geosci Model Dev 4:1051–1075

    Article  Google Scholar 

  • Corlett RT, Lafrankie Jr JV (1998) Potential impacts of climate change on tropical Asian forests through an influence on phenology. Climatic Change 39:439–453

  • Das D, Alam M (2001) Trees of Bangladesh. Bangladesh Forest Research Institute, Chittagong

    Google Scholar 

  • Deb JC, Phinn S, Butt N, McAlpine CA (2017) The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecol Evol 7 (7):2238–2248. doi:10.1002/ece3.2846

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range‐shifting species. Methods Ecol Evol 1(4):330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Article  Google Scholar 

  • Falk W, Mellert KH (2011) Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria. J Veg Sci 22(4):621–634. doi:10.1111/j.1654-1103.2011.01294.x

    Article  Google Scholar 

  • Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodríguez-Sánchez F, Dobrowski SZ, Hampe A, Hu FS, Ashcroft MB, Bartlein PJ, Blois JL, Carstens BC, Davis EB, de Lafontaine G, Edwards ME, Fernandez M, Henne PD, Herring EM, Holden ZA, Kong W-s, Liu J, Magri D, Matzke NJ, McGlone MS, Saltré F, Stigall AL, Tsai Y-HE, Williams JW (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytologist 204:37–54

    Article  Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJ, Laurance WF, Lovejoy TE (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369):378–381

    Article  CAS  Google Scholar 

  • Gopalakrishnan R, Jayaraman M, Swarnim S, Chaturvedi RK, Bala G, Ravindranath N (2011) Impact of climate change at species level: a case study of teak in India. Mitig Adapt Strat Gl Chang 16(2):199–209

    Article  Google Scholar 

  • Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Adv Botany 2014:1–17

    Article  Google Scholar 

  • Guisan A, Lehmann A, Ferrier S, Austin M, Overton J, Aspinall R, Hastie T (2006) Making better biogeographical predictions of species’ distributions. J Appl Ecol 43(3):386–392

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  Google Scholar 

  • Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Glob Ecol Biogeogr 13(5):469–471

    Article  Google Scholar 

  • Hanewinkel M, Hummel S, Cullmann DA (2010) Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. Forest Ecol Manag 259(4):710–719

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland T (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

  • ITTO (International Tropical Timber Organization) (2009) Encouraging industrial forest plantations in the tropics. Report of a global study. ITTO Technical Series No. 33. Prepared by STCP Engenharia de Projetos Ltda, Brazil. pp. 143

  • Kaosa-ard A (1977) Physiological studies of sprouting of teak (Tectona grandis Linn. f.) planting stumps. Australian National University, Canberra.

  • Kaosa-ard A (1981) Teak (Tectona grandis Linn. f) its natural distribution and related factors. Nat Hist Bulletin Siam Soc 29:55–74

    Google Scholar 

  • Khan MS, Rahman MM, Ali MA (2001) Red data book of vascular plants of Bangladesh. Bangladesh National Herbarium, Dhaka

    Google Scholar 

  • Köhl M, Hildebrandt R, Olschofksy K, Köhler R, Rötzer T, Mette T, Pretzsch H, Köthke M, Dieter M, Abiy M (2010) Combating the effects of climatic change on forests by mitigation strategies. Carbon Balance Manag 5(1):1–9

    Article  Google Scholar 

  • Kollert W, Cherubini L (2012) Teak resources and market assessment 2010. FAO Planted Forests and Trees Working Paper FP/47/E, Rome

  • Kondas S (1995) Teak—a paragon of excellence. Malayan Forester 38(4):111–125

    Google Scholar 

  • Leathwick J, Austin M (2001) Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. Ecology 82(9):2560–2573

    Article  Google Scholar 

  • Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17(6):1591–1600

    Article  Google Scholar 

  • Loiselle BA, Jørgensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, Montiel OM (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35(1):105–116

    Google Scholar 

  • Mellert K, Fensterer V, Küchenhoff H, Reger B, Kölling C, Klemmt H, Ewald J (2011) Hypothesis‐driven species distribution models for tree species in the Bavarian Alps. J Veg Sci 22(4):635–646

    Article  Google Scholar 

  • Mezquida ET, Rubio A, Sánchez-Palomares O (2010) Evaluation of the potential index model to predict habitat suitability of forest species: the potential distribution of mountain pine (Pinus uncinata) in the Iberian peninsula. Eur J For Res 129(1):133–140

    Article  Google Scholar 

  • Midgley S, Somaiya RT, Stevens PR, Brown A, Nguyen DK, Laity R (2015) Planted teak: global production and markets, with reference to Solomon Islands. ACIAR Technical Reports No. 85. Australian Centre for International Agricultural Research: Canberra. pp. 92

  • Morelli TL, Daly C, Dobrowski SZ, Dulen DM, Ebersole JL, Jackson ST, Lundquist JD, Millar CI, Maher SP, Monahan WB, Nydick KR, Redmond KT, Sawyer SC, Stock S, Beissinger SR (2017) Managing climate change refugia for climate adaptation. PLoS ONE 12:e0169725

    Article  Google Scholar 

  • Nidavani RB, Mahalakshmi A (2014) Teak (tectona grandis linn.): a renowned timber plant with potential medicinal values. Inter J Pharm Pharm Sci 6(1):48–54

    Google Scholar 

  • Nunifu T, Murchison H (1999) Provisional yield models of teak (Tectona grandis Linn F.) plantations in northern Ghana. Forest Ecol Manag 120(1):171–178

    Article  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JE, Butchart SH, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5(3):215–224

    Article  Google Scholar 

  • Pandey D, Brown C (2000) Teak: a global overview. UNASYLVA-FAO-:3-13

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics 3:59–72

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190(3):231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19(1):181–197

    Article  Google Scholar 

  • Raiyani D (2013) Economics, market and price: plantation teak. Presentation to International Teak Conference, Bangkok, 2013. Olam International.

  • Roshetko JM, Rohadi D, Perdana A, Sabastian G, Nuryartono N, Pramono AA, Widyani N, Manalu P, Fauzi MA, Sumardamto P (2013) Teak systems’ contribution to rural development in Indonesia. In: The World Teak Conference, Bangkok, Thailand, 2013. pp 24–27

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Salam MA, Noguchi T, Koike M (1999) The causes of forest cover loss in the hill forests in Bangladesh. GeoJournal 47(4):539–549

    Article  Google Scholar 

  • Sarker SK, Deb JC, Halim MA (2011) A diagnosis of existing logging bans in Bangladesh. Int Forestry Rev 13(4):461–475

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102(23):8245–8250

    Article  CAS  Google Scholar 

  • Trabucco A, Zomer R (2010) Global soil water balance geospatial database. CGIAR Consortium for Spatial Information Published online, available from the CGIAR-CSI GeoPortal at: http://wwwcgiar-csi org

  • Troup RS (1921) The silviculture of Indian trees, vol 1. Oxford University Press

  • Uddin MB, Steinbauer MJ, Jentsch A, Mukul SA, Beierkuhnlein C (2013) Do environmental attributes, disturbances and protection regimes determine the distribution of exotic plant species in Bangladesh forest ecosystem? Forest Ecol Manag 303:72–80

    Article  Google Scholar 

  • Uden DR, Allen CR, Angeler DG, Corral L, Fricke KA (2015) Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol Invasions 17(10):2831–2850

    Article  Google Scholar 

  • van Zonneveld M, Koskela J, Jarvis A (2009) Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva 60:24–29

    Google Scholar 

  • Wang T, Wang G, Innes J, Nitschke C, Kang H (2016) Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia–Pacific region. Forest Ecol Manag 360:357–366

    Article  Google Scholar 

  • Wheeler CE, Omeja PA, Chapman CA, Glipin M, Tumwesigye C, Lewis SL (2016) Carbon sequestration and biodiversity following 18years of active tropical forest restoration. Forest Ecol Manag 373:44–55

    Article  Google Scholar 

  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106(2):19729–19736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by The International Postgraduate Research Scholarship (IPRS) and UQ Centennial Scholarship to the first author. We would like to acknowledge the research grant from the School of Geography, Planning and Environmental Management, The University of Queensland, Australia and the exploration fund grant from ‘The Explorers Club’ for fieldwork. The valuable comments provided by two anonymous reviewers on the earlier version of this manuscript are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiban Chandra Deb.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, J.C., Phinn, S., Butt, N. et al. Climatic-Induced Shifts in the Distribution of Teak (Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning. Environmental Management 60, 422–435 (2017). https://doi.org/10.1007/s00267-017-0884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0884-6

Keywords

Navigation