Skip to main content

Advertisement

Log in

Possible Implications of Increased Carbon Dioxide Levels and Climate Change for Desert Ecosystems

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Despite the considerable progress achieved during recent years in quantifying and modeling climatic and ecological processes caused by increasing concentrations of greenhouse gases in the atmosphere, there are still major uncertainties regarding the potential effects of increasing concentrations of either CO2 (carbon dioxide) or future climate change in arid ecosystems. General Circulation Models predict varying patterns of moister or drier conditions in deserts for the next century, but the results of climatic and ecosystem modeling in relation to deserts in a future “greenhouse effect” climate are complex and contradictory. Nevertheless, if deserts do respond more dramatically to global temperature change, as they did during the Holocene and, especially the last interglacial era (130,000 years ago), they might act as globally significant sinks of carbon into soils and vegetation. Some growth chamber experiments have indicated that increased CO2 will significantly affect desert shrubs, whereas other chamber and field experiments suggest that rising levels of atmospheric CO2 may not dramatically affect desert ecosystems, although certain individual species may be strongly favored. It is difficult to make a firm statement whether there are any valid analogs between the climate changes of the past and future climate change induced by greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. P. Abell P. Hoelzmann H.-J. Pachur (1996) ArticleTitleStable isotope ratios of gastropod shells and carbonate sediments of NW Sudan as palaeoclimatic indicators Palaeoecology of Africa 24 33–52

    Google Scholar 

  2. J. M. Adams H. Faure (1998) ArticleTitleA new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction Global and Planetary Change 16 3–24 Occurrence Handle10.1016/S0921-8181(98)00003-4

    Article  Google Scholar 

  3. J. M. Adams E. Lioubimtseva (2002) Some key uncertainties in the global distribution of soil and peat carbon. J. M. Kimble R. Lal R. F. Follett (Eds) Agricultural practices and policies for carbon sequestration in soil CRC Press Lewis Publishers Boca Raton, Florida 459–469

    Google Scholar 

  4. J. M. Adams W. M. Post (1999) ArticleTitleAn estimate of the changing size of the caliche carbonate reservoir on land since the Last Glacial Maximum Global and Planetary Change 20 IssueID4 243–256 Occurrence Handle10.1016/S0921-8181(99)00015-6

    Article  Google Scholar 

  5. J. M. Adams M. Maslin E. Thomas (1999) ArticleTitleSudden climate transitions during the Quaternary Progress in Physical Geography 23 1–36 Occurrence Handle10.1191/030913399670425018

    Article  Google Scholar 

  6. G. L. Ajtay P. Ketner P. Duvigneaud (1979) Terrestrial primary production and phytomass. B. Bolin E. T. Degens S. Kempe P. Ketner (Eds) The global carbon cycle. SCOPE 13 Gresham Press Surrey 129–182

    Google Scholar 

  7. D. Bachelet R. P. Neilson J. M. Lenihan R. Drapek (2001) ArticleTitleClimatic change effects on vegetation distribution and carbon budget in the United States Ecosystems 4 164–185 Occurrence Handle10.1007/s10021-001-0002-7 Occurrence Handle1:CAS:528:DC%2BD3MXltVKksL4%3D

    Article  CAS  Google Scholar 

  8. J. M. Barnola P. Pimienta D. Raynaud Y. S. Korotkevich (1991) ArticleTitleCO2–climate relationship as deduced from the Vostok ice core Tellus 43 IssueIDB 83–90 Occurrence Handle10.1034/j.1600-0889.1991.t01-1-00002.x

    Article  Google Scholar 

  9. N. H. Batjes W. G. Sombroeck (1997) ArticleTitlePossibilities for carbon sequestration in tropical and subtropical soils Global Change Biology 3 161–173 Occurrence Handle10.1046/j.1365-2486.1997.00062.x

    Article  Google Scholar 

  10. H. BassiriRad J. F. Reynolds R. A. Virginia M. H. Brunelle (.) ArticleTitleGrowth and root NO3 and PO43– uptake capacity of three desert species in response to atmospheric CO2 enrichment Australian Journal of Plant Physiology 24 353–358

    Google Scholar 

  11. F. A. Bazazz (1990) ArticleTitleThe response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21 167–196 Occurrence Handle10.1146/annurev.es.21.110190.001123

    Article  Google Scholar 

  12. F. A. Bazzaz K. Garbutt (1988) ArticleTitleThe Response of annuals in competitive neighborhoods: Effects of elevated CO2. Ecology 69 937–946

    Google Scholar 

  13. Bazilevich N. I. 1995. Biomass and biologic production of vegetation formations of the former USSR (Biomassa i bioproductivnost rastitelnih formatsij. Nauka, Moscow (in Russian).

  14. J. Belnap (1993) ArticleTitleRecovery rates of cryptobiotic crusts: Inoculant use and assessment methods Great Basin Naturalist 53 89–95

    Google Scholar 

  15. J. Belnap (1995) ArticleTitleSurface disturbances: Their role in accelerating desertification Environmental Monitoring and Assessment 37 39–57 Occurrence Handle1:CAS:528:DyaK28XhtVOqsLo%3D

    CAS  Google Scholar 

  16. R. Bonnefille J. C. Roeland J. Guiot (1990) ArticleTitleTemperature and rainfall estimates for the past 40,000 years in Equatorial Africa Nature 346 347–349 Occurrence Handle10.1038/346347a0

    Article  Google Scholar 

  17. Chuulun T., Ojima D. Dashordrj J. 1999. Land use change on the Mongolian steppes, Page 73 in Open meeting on the human dimensions of global environmental change research community, Shonan Village, Kanagava, Japan,24–26 June.

  18. P. Ciais P. P. Tans M. Troiler J. W. C. White R. J. Francey (1995) ArticleTitleA large northern hemispheric terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2 Science 269 1098–1102 Occurrence Handle1:CAS:528:DyaK2MXns12msLo%3D

    CAS  Google Scholar 

  19. M. Claussen C. Kubatzki V. Brovkin A. Ganopolski P. Hoelzmann H. -J. Pachur (1999) ArticleTitleSimulation of an abrupt change in Saharan vegetation in the mid-Holocene Geophysical Research Letters 26 IssueID14 2037–2040 Occurrence Handle10.1029/1999GL900494

    Article  Google Scholar 

  20. Coude-Goussen G. 1991. Les poussieres Sahariennes (cycle sedimentaire et place dans les environnements desertiques). Paris, Universites francophones, 480 pp.

  21. H. E. Dregne Chou Nan-Ting (1992) Global desertification dimensions and costs. H. E. Dregne (Eds) Degradation and restoration of arid lands Texas Technical University Lubbock, Texas

    Google Scholar 

  22. A. I. Gladishev L. E. Rodin (1977) ArticleTitleStructure and distribution of phytomass of riverbed forest communities along the middle stretch of the River Amu-Daria (TurkmenianSSR). Botanic Journal (Botanicheskij Zurnal) 62 3–14

    Google Scholar 

  23. J. Grünzweig Ch. Körner (2000) ArticleTitleGrowth and reproductive responses to elevated CO2 in wild cereals of the northern Negev of Israel Global Change Biology 6 631–638 Occurrence Handle10.1046/j.1365-2486.2000.00346.x

    Article  Google Scholar 

  24. Guieu C. Loye-Pilot M. -D. Ridame C. Thomas C. 2002. Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. Journal of Geophysical Research, 107: No D15 10.1029/2001JD000582.

  25. E. P. Hamerlynck T. E. Huxman R. S. Nowak S. Redar M. E. Loik D. N. Jordan S. F. Zitzer J. S. Coleman J. R. Seeman S. D. Smith (2000) ArticleTitlePhotosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO2 at the Nevada Desert FACE Facility Journal of Arid Environments 44 425–436 Occurrence Handle10.1006/jare.1999.0615

    Article  Google Scholar 

  26. M. Hulme (1999) ArticleTitleGlobal warming. Progress in Physical Geography 23 IssueID2 303–311 Occurrence Handle10.1191/030913399670618041

    Article  Google Scholar 

  27. M. Hulme J. F. B. Mitchell W. Ingram T. C. Johns J. A. Lowe M. G. New D. Viner (2000) ArticleTitleClimate change scenarios for global impacts studies. Global Environmental Change 9 S3–S19 Occurrence Handle10.1016/S0959-3780(99)00015-1

    Article  Google Scholar 

  28. M. Hulme R. Doherty T. Ngara M. New D. Lister (2001) ArticleTitleAfrican climate change: 1900–2100. Climate Research 17 145–168

    Google Scholar 

  29. H. W. Hunt E. T. Elliot (1996) ArticleTitleResponses of a C3 and C4 perennial grass steppe to elevated CO2. Global Change Biology 2 35–47

    Google Scholar 

  30. T. E. Huxman S. D. Smith (2001) ArticleTitlePhotosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert Oecologia 128 193–201 Occurrence Handle10.1007/s004420100658

    Article  Google Scholar 

  31. E. P. Huxman R. S. Nowak S. Redar M. E. Loik D. N. Jordan S. F. Zitzer J. S. Coleman J. R. Seeman S. D. Smith (2000) ArticleTitlePhotosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO2 at the Nevada Desert FACE Facility Journal of Arid Environments 44 425–436 Occurrence Handle10.1006/jare.1999.0615

    Article  Google Scholar 

  32. IPCC. 1995. Climate change: The science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. in J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds.). Cambridge University Press, Cambridge.

  33. IPCC. 2001. Climate change: The scientific basis contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). in J. T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P. J. van der Linden, D. Xiaosu (eds.). Cambridge University Press, Cambridge.

  34. A. Kattenberg F. Giorgi H. Grassl G.A. Meehl G. F. B. Mitchell R. J. Stouffler T. Takioka A. J. Weaver T. M. L. Wigley (1996) Climate models—Projections of future climates. J. T. Houghton L. G. Meira Filho B. A. Callander N. Harris A. Kattenberg K. Maskell (Eds) Climate change 1995: The science of climate change. Contribution to Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climatic Change Cambridge University Press Cambridge 285–357

    Google Scholar 

  35. C. D. Keeling J. F. S. Chin T. P. Whorf (1996) ArticleTitleIncreased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382 146–149 Occurrence Handle10.1038/382146a0 Occurrence Handle1:CAS:528:DyaK28XktlSktbg%3D

    Article  CAS  Google Scholar 

  36. Kharin N. G., Tateishi R., Harahshesh H. 1999. Degradation of the drylands of Asia. Center for Environmental Remote Sensing (CEReS), Chiba University.

  37. Ch. Korner (1995) ArticleTitleTowards a better experimental basis for upscaling plant responses to elevated CO2 and climate warming. Plant Cell and Environment 18 1101–1110

    Google Scholar 

  38. V. Kotwicky R. Allan (1998) ArticleTitleLa Niña de Australia—Contemporary and palaeohydrology of Lake Eyre Palaeogeography, Palaeoclimatology, Palaeoecology 144 265–280

    Google Scholar 

  39. R. Lal H. M. Hassan J. Dumanski (1999) Desertification control to sequester carbon and mitigate the greenhouse effect. N. Rosenberg R. C. Izaurralde (Eds) Carbon sequestration in soils: Science, monitoring and beyond Malone Battelle Press Columbus, Ohio

    Google Scholar 

  40. R. Lal (2000) Soil erosion and carbon dynamics on grazing lands. R. F. Follett J. M. Kimble R. Lal (Eds) The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect CRC/Lewis Publishers Boca Raton, Florida 231–247

    Google Scholar 

  41. H. N. Le Houérou (1989) The grazing land ecosystems of the African Sahel Springer- Verlag Heidelberg

    Google Scholar 

  42. E. Lioubimtseva (1999) Impacts of climatic changes on carbon storage variations in African and Asian deserts. R. Lal J. Kimble R. Follet B. Stewart (Eds) Soil processes and the carbon cycle CRC/Lewis Publishers Boca Raton, Florida 561–576

    Google Scholar 

  43. E. Lioubimtseva J. M. Adams (2002) Carbon content in desert and semidesert soils in Central Asia. J. M. Kimble R. Lal R. F. Follett (Eds) Agricultural practices and policies for carbon sequestration in soil CRC/ Lewis Publishers Boca Raton, Florida 409–456

    Google Scholar 

  44. E. Lioubimtseva B. Simon H. Faure J. M. Adams (1998) ArticleTitleImpacts of climatic change on carbon storage in the Sahara–Gobi desert belt since the Late Glacial Maximum. Global and Planetary Change 16–17 95–105 Occurrence Handle10.1016/S0921-8181(98)00015-0

    Article  Google Scholar 

  45. T. Liu Z. Guo J. Liou J. Han Z. Ding Z. Gu N. Wu (1995) ArticleTitleVariations of Eastern Asian monsoon over the last climatic cycle. Bulletin Societe Geologigue France 166 IssueID2 221–230 Occurrence Handle1:CAS:528:DyaK2MXmslWhsbs%3D

    CAS  Google Scholar 

  46. J. M. Melillo A. D. McGuire D. W. Kicklighter B. Moore III C. J. Vorosmarty A. L. Schloss (1993) ArticleTitleGlobal climatic change and terrestrial net primary production. Nature 363 234–240 Occurrence Handle10.1038/363234a0 Occurrence Handle1:CAS:528:DyaK3sXksFeiu78%3D

    Article  CAS  Google Scholar 

  47. R. Miller I. Tegen (1998) ArticleTitleClimate response to mineral dust aerosols. Journal of Climate 11 3247–3267 Occurrence Handle10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2

    Article  Google Scholar 

  48. M. Mudelsee (2001) ArticleTitleThe phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quaternary Science Reviews 20 583–589 Occurrence Handle10.1016/S0277-3791(00)00167-0

    Article  Google Scholar 

  49. G. C. Nanson D. M. Price S. A. Short (1992) ArticleTitleWetting and drying of Australia over the past 300 ka. Geology 20 791–794 Occurrence Handle10.1130/0091-7613(1992)020<0791:WADOAO>2.3.CO;2 Occurrence Handle1:CAS:528:DyaK3sXht1yksLY%3D

    Article  CAS  Google Scholar 

  50. Nechaeva, N. T. (ed). 1984. Resursy biosphery pustin Srednei Azii i Kazakhstana (Biosphere resources of deserts in Central Asia and Kazakhstan). Nauka, Moscow (in Russian).

  51. M. New M. Hulme P. D. Z Jones (2000) ArticleTitleRepresenting twentieth century space-time climate variability. Part 2: Development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate 13 2217–2238 Occurrence Handle10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2

    Article  Google Scholar 

  52. T. M. Oberlander (1994) Global deserts: a geomorphic comparison. A. D. Abrahams A. J. Parsons (Eds) Geomorphology of desert environments Chapman & Hall London 13–35

    Google Scholar 

  53. J. S. Olson J. A. Watts L. J. Allison (1985) Major world ecosystem complexes ranked by carbon in live vegetation. NDP017. Carbon Dioxide Information Center, Oak Ridge National Laboratory Oak Ridge, Tennessee

    Google Scholar 

  54. J. S. Olson J. A. Watts L. J. Allison (1983) Carbon in live vegetation of major world ecosystems. ORNL-5862, ESD Pub. No. 1997. Oak Ridge National Laboratory Oak Ridge, Tennessee

    Google Scholar 

  55. C. E. Owensby (1993) ArticleTitleBiomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecological Applications 3 644–653

    Google Scholar 

  56. N. Petit-Maire Z. Guo (1996) ArticleTitleMise en evidence de variations climatique holocenes rapides, en phase dans les deserts actuels de Chine et du Nord de l’Afrique. Science de la Terre et des Planetes 322 847–851

    Google Scholar 

  57. N. Petit-Maire Z. T. Guo (1998) Mid-Holocene climatic change and man in the present-day Sahara desert. A. S. Alsharhan K. W. Glennie G. L. Whittle C. G. St. C. Kendall (Eds) Quaternary deserts and climatic change A.A. Balkema Rotterdam 351–356

    Google Scholar 

  58. H. Poorter M. Perez-Soba (2001) ArticleTitleGrowth response of plants to elevated CO2 under sub-optimal environmental conditions. Oecologia 129 1–20 Occurrence Handle10.1007/s004420100736

    Article  Google Scholar 

  59. W. M. Post W. R. Emmanuel P. J. Zinke A. G. Stagenberg (1982) ArticleTitleSoil carbon pools and world life zones. Nature 346 48–51

    Google Scholar 

  60. P. Rognon (1987) ArticleTitleLate quaternary climatic reconstruction for the Maghreb (North Africa). Palaeogeography, Palaeoclimatology, Palaeoecology 58 11–34

    Google Scholar 

  61. I. G. Rustamov (1994) Vegetation of the Deserts of Turkmenistan. V. Fet K. I. Atamuradov (Eds) Biogeography and ecology of Turkmenistan. Kluwer Academic Amsterdam 77–104

    Google Scholar 

  62. Sanlaville, P. 1992. Sciences de la terre et archéologie: L’évolution de la Basse Mésopotamie à l’Holocène.in Miskovsky, J. C. Les applications de la géologie à la connaissance de l’environnement de l’homme. Bulletin de la Société Géologique de France 160: 11–18.

  63. W. H. Schlesinger (1990) ArticleTitleEvidence from chronosequence studies for a low carbon storage potential of soils. Nature 348 232–234 Occurrence Handle10.1038/348232a0 Occurrence Handle1:CAS:528:DyaK3MXms1aqtA%3D%3D

    Article  CAS  Google Scholar 

  64. W. H. Schlesinger (1995) An overview of the carbon cycle. R. Lal J. Kimble E. Levine B. A. Stewart (Eds) Soils and global change. CRC/Lewis Publishers Boca Raton, Florida

    Google Scholar 

  65. S. D. Smith T. F. Huxman S. F. Zitzer T. N. Charlet D. C. Housman J. S. Coleman L. K. Fenstermaker J. R. Seemann R. S. Nowak (2000) ArticleTitleElevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408 79–82 Occurrence Handle10.1038/35040544 Occurrence Handle1:CAS:528:DC%2BD3cXotVaks74%3D Occurrence Handle11081510

    Article  CAS  PubMed  Google Scholar 

  66. F. A. Street-Perrot J. F. B. Mitchell D. S. Marchand J. S. Brunner (1990) ArticleTitleMilankovitch and albedo forcing of the tropical monsoon: a comparison of geological evidence and numerical simulations for 9000 yrs. BP. Transactions of the Royal Society of Edinburg (Earth Science) 81 407–427

    Google Scholar 

  67. Tarasov, 1992: Evlutsia klimata i landshaftov Severnogo i centralnogo Kazakhstana (Climatic and landscape evolution of northern and central Kazakhstan), Ph.D. thesis, Moscow State University Moscow, 120 pp. (in Russian).

  68. R. S. Thompson C. Whitlock P. J. Bartlein S. P. Harrison W. G. Spaulding (1993) Climatic changes in the western United States since 18,000 yr B.P. H.E. Wright J. Kutzbach III F.A. Ruddiman F.A. Street- Perrott P.H. Bartlein (Eds) Global climates since the Last Glacial Maximum. University of Minnesota Press Minneapolis, Minnesota 468–513

    Google Scholar 

  69. UNCCD. 2001. Assessment of the status of land degradation in arid, semi-arid and dry sub-humid areas; Land degradation assessment in drylands and millennium ecosystem assessment. United Nations Convention to Combat Desertification. ICCD/COP (5), Geneva.

  70. UNEP. 1992. World atlas of desertification. N. Middleton and D. Thomas (eds.).Edward Arnold for United Nations Environmental Program, London, 69 pp.

  71. UNEP. 1997. World atlas of desertification, 2nd ed. N. Middleton and D. Thomas (eds.). Oxford University Press for United Nations Environmental Program, Oxford, 82 pp.

  72. InstitutionalAuthorNameVEMAP Members (Vegetation/Ecosystem Modeling and Analysis Project). (1995) ArticleTitleVegetation/Ecosystem Modeling and Analysis Project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem resoponses to climate change and CO2 doubling. Global Biogem. Cycles 9 407–437

    Google Scholar 

  73. H. Walter E. O. Box (1983) Temperate deserts and semi-deserts. I. West E. Neil (Eds) Ecosystems of the world, Volume 5. Elsevier Amsterdam 1–159

    Google Scholar 

  74. R. H. Webb H.G. Wilshire (1983) Environmental effects of off-road vehicles: Impacts and management in arid regions. Springer-Verlag New York, New York

    Google Scholar 

  75. W. Whitford (2002) Ecology of desert systems. Academic Press London 343 pp

    Google Scholar 

  76. Z. W. Yan N. Petit-Maire (1994) ArticleTitleThe last 140 ka in the Afro-Asian climatic transitional zone. Palaeogeography, Palaeoclimatology, Palaeoecology 110 217–233

    Google Scholar 

  77. Zender C. S. Radiative Forcing by mineral dust, 1999. in Proceedings of the Workshop on Mineral Dust, 9–11 June 1999, Boulder, Colorado.

  78. N. Zeng J. D. Neelin K. -M. Lau J. Tucker (1999 ) ArticleTitleEnhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286 1537–1540 Occurrence Handle10.1126/science.286.5444.1537 Occurrence Handle1:CAS:528:DyaK1MXns1ajtrs%3D Occurrence Handle10567254

    Article  CAS  PubMed  Google Scholar 

  79. P. J. Zinke A. G. Stangenburger W. M Post W. R. Emmanuel J. S. Olson (1984) Worldwide organic soil carbon and nitrogen data. Environmental Sciences Division, Publication No.2212. Oak Ridge National Lab/US Department of Energy Oak Ridge, Tennessee

    Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Rattan Lal, Dr. John Kimble, and Dr. Roy Cole whose helpful comments allowed us substantially improve the earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lioubimtseva, E., Adams, J. Possible Implications of Increased Carbon Dioxide Levels and Climate Change for Desert Ecosystems . Environmental Management 33 (Suppl 1), S388–S404 (2004). https://doi.org/10.1007/s00267-003-9147-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-003-9147-9

Keywords

Navigation