Skip to main content

Advertisement

Log in

Elevated Atmospheric CO2 in Agroecosystems: Residue Decomposition in the Field

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Elevated atmospheric CO2 concentration can increase biomass production and alter tissue composition. Shifts in both quantity and quality of crop residue may alter carbon (C) and nitrogen (N) dynamics and management considerations in future CO2-enriched agroecosystems. This study was conducted to determine decomposition rates of the legume soybean [Glycine max (L.) Merr.] and nonlegume grain sorghum [Sorghum bicolor (L.) Moench.] residue produced under two levels of atmospheric CO2 (ambient and twice ambient) on a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults) in Auburn, Alabama, USA, managed using no-till practices. At maturity, harvested plants were separated into component parts for dry weight determination and tissue analysis. Mass, C, and N losses from residues were determined using the mesh bag method. Biomass production was significantly greater for soybean compared to sorghum and for elevated versus ambient CO2-grown plants. The CO2 level had little affect on the C/N ratio of residue (probably because the tissue used was senesced). Elevated CO2 concentration did not affect percent residue recovery; however, greater biomass production observed under elevated CO2 resulted in more residue and C remaining after overwintering. The higher total N content of soybean residue, particularly when grown under elevated CO2, indicated more N may be available to a following crop with lower N inputs required. Results suggest that in a high CO2 environment, greater amounts of residue may increase soil C and ground cover, which may enhance soil water storage, improve soil physical properties, and reduce erosion losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. S. Amthor (1995) ArticleTitleTerrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biology 1 243–274

    Google Scholar 

  2. Batchelor, J. A., Jr. 1984. Properties of bin soils at the National Tillage Machinery Laboratory. Publ. 218. USDA-ARS National Soil Dynamics Laboratory, Auburn, Alabama, 16 pp

  3. R. L. Blevins M. S. Smith G. W. Thomas (1984) Changes in soil properties under no-tillage. Pages 190–230 R. E. Phillips S. H. Phillips (Eds) No-tillage agriculture: principles and practices. Van Nostrand Reinhold New York

    Google Scholar 

  4. C. A. Campbell R. P. Zentner (1993) ArticleTitleSoil organic matter as influenced by crop rotation and fertilization. Soil Science Society of America Journal 57 103–104

    Google Scholar 

  5. B. G. Drake M. A. Gonzalez-Meler (1997) ArticleTitleMore efficient plants: a consequence of rising atmospheric CO2? Annual Reviews of Plant Physiology & Plant Molecular Biology 48 609–639

    Google Scholar 

  6. W. A. Dugas S. A. Prior H. H. Rogers (1997) ArticleTitleTranspiration from sorghum and soybean growing under ambient and elevated CO2 concentrations. Agricultural and Forest Meteorology 83 37–48 Occurrence Handle10.1016/S0168-1923(96)02353-2

    Article  Google Scholar 

  7. InstitutionalAuthorNameFAO (1996) Food and Agriculture Organization of the United Nations 1996. FAO production yearbook 1995, Volume 49. FAO Statistics Series No. 133 FAO Rome 236

    Google Scholar 

  8. R. F. Follett (1993) ArticleTitleGlobal climate change, U.S. agriculture, and carbon dioxide. Journal of Production Agriculture 6 181–190 Occurrence Handle10.1597/1545-1569(1996)033<0236:MVKDPO>2.3.CO;2 Occurrence Handle1:STN:280:BymA3Mjgs1E%3D Occurrence Handle8734725

    Article  CAS  PubMed  Google Scholar 

  9. F. Ghidey E. E. Alberts (1993) ArticleTitleResidue type and placement effects on decomposition: field study and model evaluation. Transactions of the American Society of Agricultural Engineers 36 1611–1617

    Google Scholar 

  10. D. R. Griffith J. V. Mannering J. E. Box (1986) Soil and moisture management with reduced tillage. Pages 19–57 M. A. Sprague G. B. Triplett (Eds) No-tillage and surface-tillage agriculture: the tillage revolution. John Wiley & Sons New York

    Google Scholar 

  11. Hom, J. 2002. Global change and forest soils. Pages 127–134 In: J. M. Kimble and others (ed.) The potential of US forest soils to sequester carbon and mitigate the greenhouse effect., CRC Press, Boca Raton, Florida.

  12. J. T. Houghton G. J. Jenkins J. J. Ephraums (1990) Climate Change: The IPCC scientific assessment Cambridge University Press Cambridge 65

    Google Scholar 

  13. J. T. Houghton B. A. Callander S. K. Varney (1992) Climate change 1992: the supplementary report to the IPCC scientific assessment Cambridge University Press Cambridge 200

    Google Scholar 

  14. B. D. Hudson (1994) ArticleTitleSoil organic matter and available water capacity. Journal of Soil and Water Conservation 49 IssueID2 189–194

    Google Scholar 

  15. C. D. Keeling T. P. Whorf (1994) Atmospheric CO2 records from the sites in the SIO air sampling network. Pages 16–26 T. A. Boden D. P. Kaiser R. J. Sepanski F. W. Stoss (Eds) Trends ‘93: a compendium of data on global change, ORNL/CDIAC-65. The Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee.

    Google Scholar 

  16. J. S. Kern M. G. Johnson (1993) ArticleTitleConservation tillage impacts on national soil and atmospheric carbon levels. Soil Science Society of America Journal 57 200–210

    Google Scholar 

  17. B. A. Kimball (1983) ArticleTitleCarbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal 75 779–788

    Google Scholar 

  18. B. A. Kimball K. Kobayashi M. Bindi (2002) ArticleTitleResponses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77 293–368 Occurrence Handle10.1016/S0065-2113(02)77017-X

    Article  Google Scholar 

  19. R. Lal J. M. Kimble R. F. Follett C. V. Cole (1998a) The potential of US cropland to sequester carbon and mitigate the greenhouse effect Ann Arbor Press Ann Arbor, Michigan 128

    Google Scholar 

  20. R. Lal J. M. Kimble R. F. Follett B. A. Stewart (1998b) Management of carbon sequestration in soil CRC Lewis Publishers Boca Raton, Florida 457

    Google Scholar 

  21. R. C. Littell G. A. Milliken W. W. Stroup R. D. Wolfinger (1996) SAS system for mixed models SAS Institute Cary, North Carolina 633

    Google Scholar 

  22. Melillo, J. M. 1983. Will increases in atmospheric CO2 concentrations affect decay processes? Ecosystem Center Annual Report. Marine Biology Laboratory, Woods Hole, Massachusetts, pp. 10–11

  23. R. J. Norby M. F. Cotrufo (1998) ArticleTitleA question of litter quality. Nature 396 17–18 Occurrence Handle10.1038/23812 Occurrence Handle1:CAS:528:DyaK1cXntl2rs78%3D

    Article  CAS  Google Scholar 

  24. J. F. Parr R. I. Papendick (1978) Factors affecting the decomposition of crop residues by microorganisms. Pages 101–129 W. R. Oschwald (Eds) Crop residue management systems. ASA Spec. Publ. No. 31. ASA, CSSA, and SSSA Madison, Wisconsin

    Google Scholar 

  25. K. Paustian O. Andrén H. H. Janzen R. Lal P. Smith G. Tian H. Tiessen M. van Noordwijk P. L. Woomer (1997) ArticleTitleAgricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management 13 230–244

    Google Scholar 

  26. R. E. Phillips R. L. Blevins G. W. Thomas W. W. Frye S. H. Phillips (1980) ArticleTitleNo-tillage agriculture. Science 208 1108–1113

    Google Scholar 

  27. H. Poorter Y. Van Berkel R. Baxter J. Den Hertog P. Dijkstra R. M. Gifford K. L. Griffin C. Roumet J. Roy S. C. Wong (1997) ArticleTitleThe effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell and Environment 20 472–482 Occurrence Handle10.1046/j.1365-3040.1997.d01-84.x Occurrence Handle1:CAS:528:DyaK2sXjtVOgsrY%3D

    Article  CAS  Google Scholar 

  28. K. N. Potter H. A. Torbert O. R. Jones J. E. Matocha J. E. Morrison P. W. Unger (1998) ArticleTitleDistribution and amount of soil organic C in long-term management systems in Texas. Soil Tillage Research 47 309–321 Occurrence Handle10.1016/S0167-1987(98)00119-6

    Article  Google Scholar 

  29. S. A. Prior H. H. Rogers G. B. Runion J. R. Mauney (1994) ArticleTitleEffects of free-air CO2 enrichment on cotton root growth. Agricultural and Forest Meteorology 70 69–86 Occurrence Handle10.1016/0168-1923(94)90048-5

    Article  Google Scholar 

  30. S. A. Prior H. H. Rogers G. B. Runion H. A. Torbert D. C. Reicosky (1997a) ArticleTitleCarbon dioxide-enriched agro-ecosystems: influence of tillage on short-term soil carbon dioxide efflux. Journal of Environmental Quality 26 244–252 Occurrence Handle1:CAS:528:DyaK2sXptFOntg%3D%3D

    CAS  Google Scholar 

  31. S. A. Prior H. A. Torbert G. B. Runion H. H. Rogers C. W. Wood B. A. Kimball R. L. LaMorte P. J. Pinter G. W. Wall (1997b) ArticleTitleFree-air carbon dioxide enrichment of wheat: soil carbon and nitrogen dynamics. Journal of Environmental Quality 26 1161–1166 Occurrence Handle1:CAS:528:DyaK2sXlt1Shs7w%3D

    CAS  Google Scholar 

  32. H. H. Rogers R. C. Dahlman (1993) ArticleTitleCrop responses to CO2 enrichment. Vegetatio 104/105 117–131

    Google Scholar 

  33. H. H. Rogers W. W. Heck A. S. Heagle (1983a) ArticleTitleA field technique for the study of plant responses to elevated carbon dioxide concentrations. Air Pollution Control Association Journal 33 42–44 Occurrence Handle1:CAS:528:DyaL3sXnslChtw%3D%3D

    CAS  Google Scholar 

  34. H. H. Rogers J. F. Thomas G. E. Bingham (1983b) ArticleTitleResponse of agronomic and forest species to elevated atmospheric carbon dioxide. Science 220 428–429

    Google Scholar 

  35. H. H. Rogers G. B. Runion S. V. Krupa (1994) ArticleTitlePlant responses to atmospheric CO2 enrichment with emphasis on roots and rhizosphere. Environmental Pollution 83 155–189 Occurrence Handle10.1016/0269-7491(94)90034-5 Occurrence Handle1:STN:280:DC%2BD2c7psFOlsw%3D%3D Occurrence Handle15091762

    Article  CAS  PubMed  Google Scholar 

  36. G. B. Runion J. A. Entry S. A. Prior R. J. Mitchell H. H. Rogers (1999) ArticleTitleTissue chemistry and carbon allocation in seedlings of Pinus palustris subjected to elevated atmospheric CO2 and water stress. Tree Physiology 19 329–335 Occurrence Handle1:CAS:528:DyaK1MXitlaqtLo%3D Occurrence Handle12651576

    CAS  PubMed  Google Scholar 

  37. S. J. Smith A. N. Sharpley (1990) ArticleTitleSoil nitrogen mineralization in the presence of surface and incorporated crop residues. Agronomy Journal 82 112–116

    Google Scholar 

  38. B. R. Strain F. A. Bazzaz (1983) Terrestrial plant communities. Pages 177–222 E. R. Lemon (Eds) CO2 and plants: the response of plants to rising levels of atmospheric CO2. American Association for the Advancement of Science Selected Symposium 84. Westview Press Boulder, Colorado

    Google Scholar 

  39. H. A. Torbert S. A. Prior H. H. Rogers (1995) ArticleTitleElevated atmospheric carbon dioxide effects on cotton plant residue decomposition. Soil Science Society of America Jouranl 59 1321–1328 Occurrence Handle1:CAS:528:DyaK2MXotFOgur0%3D

    CAS  Google Scholar 

  40. H. A. Torbert S. A. Prior H. H. Rogers W. H. Schlesinger G. L. Mullins (1996) ArticleTitleElevated atmospheric carbon dioxide in agro-ecosystems affects groundwater quality. Journal of Environmental Quality 25 720–726 Occurrence Handle1:CAS:528:DyaK28XksFalsLk%3D

    CAS  Google Scholar 

  41. H. A. Torbert H. H. Rogers S. A. Prior W. H. Schlesinger G. B. Runion (1997) ArticleTitleEffects of elevated atmospheric CO2 in agro-ecosystems on soil carbon storage. Global Change Biology 3 513–521 Occurrence Handle10.1046/j.1365-2486.1997.d01-173.x

    Article  Google Scholar 

  42. H. A. Torbert S. A. Prior H. H. Rogers G. B. Runion (1998) ArticleTitleCrop residue decomposition as affected by growth under elevated atmospheric CO2. Soil Science 163 IssueID5 412–419 Occurrence Handle10.1097/00010694-199805000-00009 Occurrence Handle1:CAS:528:DyaK1cXjtlKlsbg%3D

    Article  CAS  Google Scholar 

  43. H. A. Torbert S. A. Prior H. H. Rogers C. W. Wood (2000) ArticleTitleElevated atmospheric CO2 effects on agro-ecosystems: Residue decomposition processes and soil C storage. Plant and Soil 224 59–73 Occurrence Handle10.1023/A:1004797123881 Occurrence Handle1:CAS:528:DC%2BD3cXnsVejsbg%3D

    Article  CAS  Google Scholar 

  44. P. W. Unger T. M. McCalla (1980) ArticleTitleConservation tillage systems. Advances in Agronomy 33 1–58

    Google Scholar 

  45. J. A. Van Veen E. Liljeroth L. J. A. Lekkerkerk S. C. Van de Geijn (1991) ArticleTitleCarbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecological Applications 1 175–181

    Google Scholar 

  46. S. H. Wittwer (1995) Food, climate, and carbon dioxide: the global environment and world food production CRC Press Boca Raton, Florida 236

    Google Scholar 

  47. C. W. Wood H. A. Torbert H. H. Rogers G. B. Runion S. A. Prior (1994) ArticleTitleFree-air CO2 enrichment effects on soil carbon and nitrogen. Agricultural and Forest Meteorology 70 103–116 Occurrence Handle10.1016/0168-1923(94)90050-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Barry G. Dorman, Tammy K. Dorman, and Robert F. Chaison for technical assistance. Support from Biological and Environmental Research Program (BER), U.S. Department of Energy (Interagency Agreement No. DE-AI02-95ER62088) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Prior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prior, S., Torbert, H., Runion, G. et al. Elevated Atmospheric CO2 in Agroecosystems: Residue Decomposition in the Field. Environmental Management 33 (Suppl 1), S344–S354 (2004). https://doi.org/10.1007/s00267-003-9143-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-003-9143-0

Keywords

Navigation