Skip to main content

Advertisement

Log in

Organoids and Their Research Progress in Plastic and Reconstructive Surgery

  • Review
  • Special Topic
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Organoids are 3D structures generated from stem cells. Their functions and physiological characteristics are similar to those of normal organs. They are used in disease mechanism research, new drug development, organ transplantation and other fields. In recent years, the application of 3D materials in plastic surgery for repairing injuries, filling, tissue reconstruction and regeneration has also been investigated. The PubMed/MEDLINE database was queried to search for animal and human studies published through July of 2022 with search terms related to Organoids, Plastic Surgery, Pluripotent Stem Cells, Bioscaffold, Skin Reconstruction, Bone and Cartilage Regeneration. This review presents stem cells, scaffold materials and methods for the construction of organoids for plastic surgery, and it summarizes their research progress in plastic surgery in recent years.

Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12:1

    Article  Google Scholar 

  2. Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, Godfrey EM, Upponi SS, Brevini T, Wesley BT, Garcia-Bernardo J, Mahbubani K, Canu G, Gieseck R 3rd, Berntsen NL, Mulcahy VL, Crick K, Fear C, Robinson S, Swift L, Gambardella L, Bargehr J, Ortmann D, Brown SE, Osnato A, Murphy MP, Corbett G, Gelson WTH, Mells GF, Humphreys P, Davies SE, Amin I, Gibbs P, Sinha S, Teichmann SA, Butler AJ, See TC, Melum E, Watson CJE, Saeb-Parsy K, Vallier L (2021) Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 371:839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A (2020) Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol 13:97

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clevers H (2016) Modeling Development and Disease with Organoids. Cell 165:1586–1597

    Article  CAS  PubMed  Google Scholar 

  5. Kimbrel EA, Lanza R (2020) Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 19:463–479

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Polo I, Behr R (2022) Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies. Neural Regen Res 17:1867–1874

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cao S, Loh K, Pei Y, Zhang W, Han J (2012) Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality. Protein Cell 3:834–845

    Article  PubMed  PubMed Central  Google Scholar 

  8. Andrzejewska A, Lukomska B, Janowski M (2019) Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37:855–864

    Article  PubMed  Google Scholar 

  9. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  CAS  PubMed  Google Scholar 

  10. Zhang R, Ma J, Han J, Zhang W, Ma J (2019) Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am J Transl Res 11:6275–6289

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Contentin R, Jammes M, Bourdon B, Casse F, Bianchi A, Audigie F, Branly T, Velot E, Galera P (2022) Bone marrow MSC secretome increases equine articular chondrocyte collagen accumulation and their migratory capacities. Int J Mol Sci 23:1

    Article  Google Scholar 

  12. Wang T, Xu W, Zhao X, Bai B, Hua Y, Tang J, Chen F, Liu Y, Wang Y, Zhou G, Cao Y (2022) Repair of osteochondral defects mediated by double-layer scaffolds with natural osteochondral-biomimetic microenvironment and interface. Mater Today Bio 14:100234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma K, Laco F, Ramakrishna S, Liao S, Chan CK (2009) Differentiation of bone marrow-derived mesenchymal stem cells into multi-layered epidermis-like cells in 3D organotypic coculture. Biomaterials 30:3251–3258

    Article  CAS  PubMed  Google Scholar 

  14. Xiang J, Zhou L, Xie Y, Zhu Y, Xiao L, Chen Y, Zhou W, Chen D, Wang M, Cai L, Guo L (2022) Mesh-like electrospun membrane loaded with atorvastatin facilitates cutaneous wound healing by promoting the paracrine function of mesenchymal stem cells. Stem Cell Res Ther 13:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silini AR, Cargnoni A, Magatti M, Pianta S, Parolini O (2015) The long path of human placenta, and its derivatives, in regenerative medicine. Front Bioeng Biotechnol 3:162

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rousselle P, Braye F, Dayan G (2019) Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 146:344–365

    Article  CAS  PubMed  Google Scholar 

  17. Abbasi-Kangevari M, Ghamari SH, Safaeinejad F, Bahrami S, Niknejad H (2019) Potential therapeutic features of human amniotic mesenchymal stem cells in multiple sclerosis: immunomodulation, inflammation suppression, angiogenesis promotion, oxidative stress inhibition, neurogenesis induction, MMPs regulation, and remyelination stimulation. Front Immunol 10:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farhadihosseinabadi B, Farahani M, Tayebi T, Jafari A, Biniazan F, Modaresifar K, Moravvej H, Bahrami S, Redl H, Tayebi L, Niknejad H (2018) Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artif Cells Nanomed Biotechnol 46:431–440

    Article  CAS  PubMed  Google Scholar 

  19. Yu SC, Xu YY, Li Y, Xu B, Sun Q, Li F, Zhang XG (2015) Construction of tissue engineered skin with human amniotic mesenchymal stem cells and human amniotic epithelial cells. Eur Rev Med Pharmacol Sci 19:4627–4635

    PubMed  Google Scholar 

  20. Pan C, Lang H, Zhang T, Wang R, Lin X, Shi P, Zhao F, Pang X (2019) Conditioned medium derived from human amniotic stem cells delays H2O2induced premature senescence in human dermal fibroblasts. Int J Mol Med 44:1629–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu QW, Huang QM, Wu HY, Zuo GS, Gu HC, Deng KY, Xin HB (2021) Characteristics and therapeutic potential of human amnion-derived stem cells. Int J Mol Sci 22:1

    Google Scholar 

  22. Cao L, Liu W, Zhong Y, Zhang Y, Gao D, He T, Liu Y, Zou Z, Mo Y, Peng S, Shuai C (2020) Linc02349 promotes osteogenesis of human umbilical cord-derived stem cells by acting as a competing endogenous RNA for miR-25-3p and miR-33b-5p. Cell Prolif 53:e12814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yue C, Guo Z, Luo Y, Yuan J, Wan X, Mo Z (2020) c-Jun overexpression accelerates wound healing in diabetic rats by human umbilical cord-derived mesenchymal stem cells. Stem Cells Int 2020:7430968

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uzbas F, May ID, Parisi AM, Thompson SK, Kaya A, Perkins AD, Memili E (2015) Molecular physiognomies and applications of adipose-derived stem cells. Stem Cell Rev Rep 11:298–308

    Article  CAS  PubMed  Google Scholar 

  25. Al-Ghadban S, Diaz ZT, Singer HJ, Mert KB, Bunnell BA (2020) Increase in leptin and PPAR-gamma gene expression in lipedema adipocytes differentiated in vitro from adipose-derived stem cells. Cells 9:1

    Article  Google Scholar 

  26. Yuan B, Broadbent JA, Huan J, Yang H (2018) The effects of adipose stem cell-conditioned media on fibrogenesis of dermal fibroblasts stimulated by transforming growth factor-beta1. J Burn Care Res 39:129–140

    PubMed  Google Scholar 

  27. An R, Zhang Y, Qiao Y, Song L, Wang H, Dong X (2020) Adipose stem cells isolated from diabetic mice improve cutaneous wound healing in streptozotocin-induced diabetic mice. Stem Cell Res Ther 11:120

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu F, Wang X, Li Y, Ren M, He P, Wang L, Xu J, Yang S, Ji P (2022) Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration. Stem Cell Res Ther 13:26

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bicer M, Sheard J, Iandolo D, Boateng SY, Cottrell GS, Widera D (2020) Electrical stimulation of adipose-derived stem cells in 3D nanofibrillar cellulose increases their osteogenic potential. Biomolecules 10:1

    Article  Google Scholar 

  30. Zhang Y, Yang Y, Jiang M, Huang SX, Zhang W, Al Alam D, Danopoulos S, Mori M, Chen YW, Balasubramanian R, De Sousa C, Lopes SM, Serra C, Bialecka M, Kim E, Lin S, Toste De Carvalho ALR, Riccio PN, Cardoso WV, Zhang X, Snoeck HW, Que J (2018) 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for notch signaling. Cell Stem Cell 23(516–529):e5

    Google Scholar 

  31. Adel IM, Elmeligy MF, Elkasabgy NA (2022) Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics 14:1

    Article  Google Scholar 

  32. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  33. Jabaji Z, Brinkley GJ, Khalil HA, Sears CM, Lei NY, Lewis M, Stelzner M, Martin MG, Dunn JC (2014) Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9:e107814

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, Romagnolo B, Lafont F, Mege RM, Chen Y, Delacour D (2022) Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials 282:121380

    Article  CAS  PubMed  Google Scholar 

  35. Shubin AD, Felong TJ, Schutrum BE, Joe DSL, Ovitt CE, Benoit DSW (2017) Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics. Acta Biomater 50:437–449

    Article  CAS  PubMed  Google Scholar 

  36. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu RH, Wang YC, Liu SP, Shih TR, Lin HL, Chen YM, Sung JH, Lu CH, Wei JR, Wang ZW, Huang SJ, Tsai CH, Shyu WC, Lin SZ (2014) Decellularization and recellularization technologies in tissue engineering. Cell Transplant 23:621–630

    Article  PubMed  Google Scholar 

  38. Ibsirlioglu T, Elcin AE, Elcin YM (2020) Decellularized biological scaffold and stem cells from autologous human adipose tissue for cartilage tissue engineering. Methods 171:97–107

    Article  CAS  PubMed  Google Scholar 

  39. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128

    Article  CAS  PubMed  Google Scholar 

  40. Akther F, Little P, Li Z, Nguyen NT, Ta HT (2020) Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv 10:43682–43703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vanderburgh J, Sterling JA, Guelcher SA (2017) 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann Biomed Eng 45:164–179

    Article  PubMed  Google Scholar 

  42. Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, Greenfield PT, Calafat NJ, Gounley JP, Ta AH, Johansson F, Randles A, Rosenkrantz JE, Louis-Rosenberg JD, Galie PA, Stevens KR, Miller JS (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364:458–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trivedi P, Liu R, Bi H, Xu C, Rosenholm JM, Akerfelt M (2021) 3D modeling of epithelial tumors-the synergy between materials engineering, 3D bioprinting, high-content imaging, and nanotechnology. Int J Mol Sci 22:1

    Article  Google Scholar 

  44. Singh S, Choudhury D, Yu F, Mironov V, Naing MW (2020) In situ bioprinting—Bioprinting from benchside to bedside? Acta Biomater 101:14–25

    Article  CAS  PubMed  Google Scholar 

  45. Feng Q, Xu J, Zhang K, Yao H, Zheng N, Zheng L, Wang J, Wei K, Xiao X, Qin L, Bian L (2019) Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent Sci 5:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Peng L, Li L, Huang C, Shi K, Meng X, Wang P, Wu M, Li L, Cao H, Wu K, Zeng Q, Pan H, Lu WW, Qin L, Ruan C, Wang X (2021) 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 279:121216

    Article  CAS  PubMed  Google Scholar 

  47. Kabirian F, Mela P, Heying R (2022) 4D printing applications in the development of smart cardiovascular implants. Front Bioeng Biotechnol 10:873453

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ghazal AF, Zhang M, Mujumdar AS, Ghamry M (2022) Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Crit Rev Food Sci Nutr 1:1–24

    Article  Google Scholar 

  49. Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251

    Article  CAS  PubMed  Google Scholar 

  50. Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T (2001) Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng 7:473–480

    Article  CAS  PubMed  Google Scholar 

  51. Shimizu T, Yamato M, Akutsu T, Shibata T, Isoi Y, Kikuchi A, Umezu M, Okano T (2002) Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res 60:110–117

    Article  CAS  PubMed  Google Scholar 

  52. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385

    Article  PubMed  Google Scholar 

  53. Takagi S, Ohno M, Ohashi K, Utoh R, Tatsumi K, Okano T (2012) Cell shape regulation based on hepatocyte sheet engineering technologies. Cell Transplant 21:411–420

    Article  PubMed  Google Scholar 

  54. Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16:5517–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma A, Janus JR, Hamilton GS (2015) Regenerative medicine and nasal surgery. Mayo Clin Proc 90:148–158

    Article  PubMed  Google Scholar 

  56. Schon BS, Hooper GJ, Woodfield TB (2017) Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Ann Biomed Eng 45:100–114

    Article  CAS  PubMed  Google Scholar 

  57. Schubert T, Anders S, Neumann E, Scholmerich J, Hofstadter F, Grifka J, Muller-Ladner U, Libera J, Schedel J (2009) Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int J Mol Med 23:455–460

    CAS  PubMed  Google Scholar 

  58. Ingber DE (2022) Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 1:1–25

    Google Scholar 

  59. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA (2021) Organs-on-chips: into the next decade. Nat Rev Drug Discov 20:345–361

    Article  CAS  PubMed  Google Scholar 

  61. Occhetta P, Mainardi A, Votta E, Vallmajo-Martin Q, Ehrbar M, Martin I, Barbero A, Rasponi M (2019) Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat Biomed Eng 3:545–557

    Article  CAS  PubMed  Google Scholar 

  62. Mondadori C, Palombella S, Salehi S, Talo G, Visone R, Rasponi M, Redaelli A, Sansone V, Moretti M, Lopa S (2021) Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint. Biofabrication 13:1

    Article  Google Scholar 

  63. Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR (2021) Membranous extracellular matrix-based scaffolds for skin wound healing. Pharmaceutics 13:1

    Article  Google Scholar 

  64. Martino F, Perestrelo AR, Vinarsky V, Pagliari S, Forte G (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ramadan Q, Ting FC (2016) In vitro micro-physiological immune-competent model of the human skin. Lab Chip 16:1899–1908

    Article  CAS  PubMed  Google Scholar 

  66. Mori N, Morimoto Y, Takeuchi S (2017) Skin integrated with perfusable vascular channels on a chip. Biomaterials 116:48–56

    Article  CAS  PubMed  Google Scholar 

  67. Cavalcante Pita Neto I, Franco MPL, J, Chaves Moreno E, Pita P, Aurelio Lucchesi Sandrini F and Gomes De Alencar Gondim D, (2018) A Patient With Severe Lower Face Degloving Injury. J Craniofac Surg 29:e608–e610

    Article  PubMed  Google Scholar 

  68. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Article  PubMed  Google Scholar 

  69. Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM (2013) Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE 8:e77673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ebner-Peking P, Krisch L, Wolf M, Hochmann S, Hoog A, Vari B, Muigg K, Poupardin R, Scharler C, Schmidhuber S, Russe E, Stachelscheid H, Schneeberger A, Schallmoser K, Strunk D (2021) Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration. Theranostics 11:8430–8447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee J, Bscke R, Tang PC, Hartman BH, Heller S, Koehler KR (2018) Hair follicle development in mouse pluripotent stem cell-derived skin organoids. Cell Rep 22:242–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bahmad HF, Poppiti R, Alexis J (2021) Nanotherapeutic approach to treat diabetic foot ulcers using tissue-engineered nanofiber skin substitutes: a review. Diabetes Metab Syndr 15:487–491

    Article  CAS  PubMed  Google Scholar 

  73. Tiku ML, Sabaawy HE (2015) Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention. Ther Adv Musculoskelet Dis 7:76–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marchan J, Wittig O, Diaz-Solano D, Gomez M, Cardier JE (2022) Enhanced chondrogenesis from chondrocytes co-cultured on mesenchymal stromal cells: Implication for cartilage repair. Injury 53:399–407

    Article  PubMed  Google Scholar 

  75. Spasovski D, Spasovski V, Bascarevic Z, Stojiljkovic M, Vreca M, Andelkovic M, Pavlovic S (2018) Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med 20:1

    Article  Google Scholar 

  76. Li Q, Zhao F, Li Z, Duan X, Cheng J, Zhang J, Fu X, Zhang J, Shao Z, Guo Q, Hu X, Ao Y (2020) Autologous fractionated adipose tissue as a natural biomaterial and novel one-step stem cell therapy for repairing articular cartilage defects. Front Cell Dev Biol 8:694

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nguyen HT, Vu NB (2021) A simple method to produce engineered cartilage from human adipose-derived mesenchymal stem cells and poly epsilon-caprolactone scaffolds. Adv Exp Med Biol. https://doi.org/10.1007/5584_2021_669

  78. Zhou G, Jiang H, Yin Z, Liu Y, Zhang Q, Zhang C, Pan B, Zhou J, Zhou X, Sun H, Li D, He A, Zhang Z, Zhang W, Liu W, Cao Y (2018) In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 28:287–302

    Article  PubMed  PubMed Central  Google Scholar 

  79. Al-Ghadban S, Artiles M, Bunnell BA (2021) Adipose stem cells in regenerative medicine: looking forward. Front Bioeng Biotechnol 9:837464

    Article  PubMed  Google Scholar 

  80. Baddour JA, Sousounis K, Tsonis PA (2012) Organ repair and regeneration: an overview. Birth Defects Res C Embryo Today 96:1–29

    Article  CAS  PubMed  Google Scholar 

  81. Yanai R, Tetsuo F, Ito S, Itsumi M, Yoshizumi J, Maki T, Mori Y, Kubota Y, Kajioka S (2019) Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 83:102058

    Article  CAS  PubMed  Google Scholar 

  82. Forrestal DP, Klein TJ, Woodruff MA (2017) Challenges in engineering large customized bone constructs. Biotechnol Bioeng 114:1129–1139

    Article  CAS  PubMed  Google Scholar 

  83. Mohiuddin OA, Campbell B, Poche JN, Ma M, Rogers E, Gaupp D, MaA H, Bunnell BA, Hayes DJ, Gimble JM (2019) Decellularized adipose tissue hydrogel promotes bone regeneration in critical-sized mouse femoral defect model. Front Bioeng Biotechnol 7:211

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liu B, Li X, Qiu W, Liu Z, Zhou F, Zheng Y, Wen P, Tian Y (2022) Mechanical distribution and new bone regeneration after implanting 3D printed prostheses for repairing metaphyseal bone defects: a finite element analysis and prospective clinical study. Front Bioeng Biotechnol 10:921545

    Article  PubMed  PubMed Central  Google Scholar 

  85. Boffa A, Solaro L, Poggi A, Andriolo L, Reale D, Di Martino A (2021) Multi-layer cell-free scaffolds for osteochondral defects of the knee: a systematic review and meta-analysis of clinical evidence. J Exp Orthop 8:56

    Article  PubMed  PubMed Central  Google Scholar 

  86. Abedin Dargoush S, Hanaee-Ahvaz H, Irani S, Soleimani M, Khatami SM, Sohi AN (2022) A composite bilayer scaffold functionalized for osteochondral tissue regeneration in rat animal model. J Tissue Eng Regen Med 16:559–574

    Article  CAS  PubMed  Google Scholar 

  87. Willemse J, Roos FJM, Voogt IJ, Schurink IJ, Bijvelds M, De Jonge HR, Van Der Laan LJW, De Jonge J, Verstegen MMA (2021) Scaffolds obtained from decellularized human extrahepatic bile ducts support organoids to establish functional biliary tissue in a dish. Biotechnol Bioeng 118:836–851

    Article  CAS  PubMed  Google Scholar 

  88. Robertson MJ, Soibam B, O’leary JG, Sampaio LC and Taylor DA, (2018) Recellularization of rat liver: an in vitro model for assessing human drug metabolism and liver biology. PLoS ONE 13:e0191892

    Article  PubMed  PubMed Central  Google Scholar 

  89. Maqueda M, Mosquera JL, Garcia-Arumi J, Veiga A, Duarri A (2021) Repopulation of decellularized retinas with hiPSC-derived retinal pigment epithelial and ocular progenitor cells shows cell engraftment, organization and differentiation. Biomaterials 276:121049

    Article  CAS  PubMed  Google Scholar 

  90. Bhattacharjee M, Ivirico JLE, Kan HM, Bordett R, Pandey R, Otsuka T, Nair LS, Laurencin CT (2020) Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1beta activated chondrocytes. Sci Rep 10:18751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu X, He L, Li W, Li H, Wong WM, Ramakrishna S, Wu W (2017) Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen Biomater 4:21–30

    Article  CAS  PubMed  Google Scholar 

  92. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15:353–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Citro A, Moser PT, Dugnani E, Rajab TK, Ren X, Evangelista-Leite D, Charest JM, Peloso A, Podesser BK, Manenti F, Pellegrini S, Piemonti L, Ott HC (2019) Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials 199:40–51

    Article  CAS  PubMed  Google Scholar 

  94. Grebenyuk S, Ranga A (2019) Engineering Organoid Vascularization. Front Bioeng. Biotechnol 7:39

    Google Scholar 

  95. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113:3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R (2019) Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 16:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Worsdorfer P, Rockel A, Alt Y, Kern A, Ergun S (2020) Generation of vascularized neural organoids by co-culturing with mesodermal progenitor cells. STAR Protoc 1:100041

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shelkey E, Oommen D, Stirling ER, Soto-Pantoja DR, Cook KL, Lu Y, Votanopoulos KI, Soker S (2022) Immuno-reactive cancer organoid model to assess effects of the microbiome on cancer immunotherapy. Sci Rep 12:9983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bironzo P, Primo L, Novello S, Righi L, Candeloro S, Manganaro L, Bussolino F, Pirri F and Scagliotti GV (2022) Clinical-molecular prospective cohort study in non-small cell lung cancer (PROMOLE study): a comprehensive approach to identify new predictive markers of pharmacological response. Clin Lung Cancer 23:e347–e352

  100. Feier AM, Portan D, Manu DR, Kostopoulos V, Kotrotsos A, Strnad G, Dobreanu M, Salcudean A, Bataga T (2022) Primary MSCs for personalized medicine: ethical challenges, isolation and biocompatibility evaluation of 3D electrospun and printed scaffolds. Biomedicines 10:1

    Article  Google Scholar 

  101. Van Winkle LJ, Ryznar RJ, Iannaccone PM (2022) Editorial: from single stem cells to organoids, organ repair, and public health. Front Cell Dev Biol 10:849889

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bi H, Karanth SS, Ye K, Stein R, Jin S (2020) Decellularized tissue matrix enhances self-assembly of islet organoids from pluripotent stem cell differentiation. ACS Biomater Sci Eng 6:4155–4165

    Article  CAS  PubMed  Google Scholar 

  103. Gathani KM, Raghavendra SS (2016) Scaffolds in regenerative endodontics: a review. Dent Res J (Isfahan) 13:379–386

    Article  PubMed  Google Scholar 

  104. Ye J, Xiao J, Wang J, Ma Y, Zhang Y, Zhang Q, Zhang Z, Yin H (2021) The interaction between intracellular energy metabolism and signaling pathways during osteogenesis. Front Mol Biosci 8:807487

    Article  CAS  PubMed  Google Scholar 

  105. Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, Rendal-Vazquez ME, Fuentes-Boquete I, De Toro FJ, Blanco FJ (2010) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 111:846–857

    Article  CAS  PubMed  Google Scholar 

  106. Zeng N, Chen H, Wu Y, Liu Z (2021) Adipose stem cell-based treatments for wound healing. Front Cell Dev Biol 9:821652

    Article  PubMed  Google Scholar 

  107. Bouland C, Philippart P, Dequanter D, Corrillon F, Loeb I, Bron D, Lagneaux L, Meuleman N (2021) Cross-talk between mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) in bone regeneration. Front Cell Dev Biol 9:674084

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (No. 81873939)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Li or Yang An.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Wang, G., Shang, Y. et al. Organoids and Their Research Progress in Plastic and Reconstructive Surgery. Aesth Plast Surg 47, 880–891 (2023). https://doi.org/10.1007/s00266-022-03129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-022-03129-6

Keywords

Navigation