Skip to main content

Advertisement

Log in

“Fasting: An Effective Preconditioning Method to Increase Fat Graft Survival”

  • Original Article
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Most preconditioning techniques before fat grafting require external manipulation. Since nutrition is the main factor maintaining the balance of lipogenesis and lipolysis, we hypothesized that fasting before undergoing autologous fat grafting may increase lipolysis and reduce adipocyte size, thereby improving the fat graft survival rate.

Methods

C57BL/6 mice were divided into 24 h starved or fed groups. Adipose tissue lipolysis, adipogenesis, and angiogenesis-related gene expression, in fat from both groups, were analyzed. The volume and weight of the grafted fat at 4–8 weeks postoperatively were measured using micro-computed tomography. Immunohistochemistry staining and mRNA expression analysis were also performed to evaluate the effect of fasting on fat graft survival.

Results

Fasting decreased adipocyte size by inducing adipose tissue lipolysis. Adipogenesis-related genes were remarkably downregulated while lipolysis-related genes and angiogenesis inducer genes were significantly upregulated in the starved adipose tissue. The mice grafted with the fat from the 24 h starved group had approximately 20% larger volumes and considerably heavier weights than those from the fed group. Increased viable adipocytes and vessels, and reduced macrophages in the fat grafts obtained from the 24 h starved group were also observed.

Conclusions

Fasting for 24 h before harvesting fat increased the retention volume of fat graft by increasing angiogenesis via VEGF induction. Therefore, fasting would be a novel and reliable preconditioning strategy to improve graft survival in autologous fat grafting.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pu LL (2016) Mechanisms of Fat Graft Survival. Ann Plast Surg 77(Suppl 1):S84-86

    Article  CAS  PubMed  Google Scholar 

  2. Peer LA (1955) Cell survival theory versus replacement theory. Plast Reconstr Surg 16(3):161–168

    Article  CAS  Google Scholar 

  3. Eto H, Kato H, Suga H et al (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 129(5):1081–1092

    Article  CAS  PubMed  Google Scholar 

  4. Vyas KS, Vasconez HC, Morrison S et al (2020) Fat Graft Enrichment Strategies: A Systematic Review. Plast Reconstr Surg 145(3):827–841

    Article  CAS  PubMed  Google Scholar 

  5. Mashiko T, Yoshimura K (2015) How does fat survive and remodel after grafting? Clin Plast Surg 42(2):181–190

    Article  PubMed  Google Scholar 

  6. Lee JH, Kirkham JC, McCormack MC, Nicholls AM, Randolph MA, Austen WG Jr (2013) The effect of pressure and shear on autologous fat grafting. Plast Reconstr Surg 131(5):1125–1136

    Article  CAS  PubMed  Google Scholar 

  7. Cheriyan T, Kao HK, Qiao X, Guo L (2014) Low harvest pressure enhances autologous fat graft viability. Plast Reconstr Surg 133(6):1365–1368

    Article  CAS  PubMed  Google Scholar 

  8. Gassman AA, Lewis MS, Lee JC (2016) Remote Ischemic Preconditioning Recipient Tissues Improves the Viability of Murine Fat Transfer. Plast Reconstr Surg 138(1):55e–63e

    Article  CAS  PubMed  Google Scholar 

  9. Zhong X, Yan W, He X, Ni Y (2009) Improved fat graft viability by delayed fat flap with ischaemic pretreatment. J Plast Reconstr Aesthet Surg 62(4):526–531

    Article  PubMed  Google Scholar 

  10. Giatsidis G, Cheng L, Haddad A et al (2018) Noninvasive induction of angiogenesis in tissues by external suction: sequential optimization for use in reconstructive surgery. Angiogenesis 21(1):61–78

    Article  CAS  PubMed  Google Scholar 

  11. Sezgin B, Ozmen S, Bulam H et al (2014) Improving fat graft survival through preconditioning of the recipient site with microneedling. J Plast Reconstr Aesthet Surg 67(5):712–720

    Article  PubMed  Google Scholar 

  12. Lee JW, Han YS, Kim SR, Kim HK, Kim H, Park JH (2015) A rabbit model of fat graft recipient site preconditioning using external negative pressure. Arch Plast Surg 42(2):150–158

    Article  PubMed  PubMed Central  Google Scholar 

  13. Flacco J, Chung N, Blackshear CP et al (2018) Deferoxamine Preconditioning of Irradiated Tissue Improves Perfusion and Fat Graft Retention. Plast Reconstr Surg 141(3):655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim J, Park M, Jeong W et al (2019) Recipient-Site Preconditioning with Deferoxamine Increases Fat Graft Survival by Inducing VEGF and Neovascularization in a Rat Model. Plast Reconstr Surg 144(4):619e–629e

    Article  CAS  PubMed  Google Scholar 

  15. Fruhbeck G, Mendez-Gimenez L, Fernandez-Formoso JA, Fernandez S, Rodriguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27(1):63–93

    Article  PubMed  CAS  Google Scholar 

  16. van Harmelen V, Skurk T, Rohrig K et al (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27(8):889–895

    Article  PubMed  Google Scholar 

  17. Meyer LK, Ciaraldi TP, Henry RR, Wittgrove AC, Phillips SA (2013) Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2(4):217–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lofgren P, Andersson I, Adolfsson B et al (2005) Long-term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state. J Clin Endocrinol Metab 90(11):6207–6213

    Article  PubMed  CAS  Google Scholar 

  19. Murphy J, Moullec G, Santosa S (2017) Factors associated with adipocyte size reduction after weight loss interventions for overweight and obesity: a systematic review and meta-regression. Metabolism 67:31–40

    Article  CAS  PubMed  Google Scholar 

  20. Ellacott KL, Morton GJ, Woods SC, Tso P, Schwartz MW (2010) Assessment of feeding behavior in laboratory mice. Cell Metab 12(1):10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho KW, Morris DL, Lumeng CN (2014) Flow cytometry analyses of adipose tissue macrophages. Methods Enzymol 537:297–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guibert M, Franchi G, Ansari E et al (2013) Fat graft transfer in children’s facial malformations: a prospective three-dimensional evaluation. J Plast Reconstr Aesthet Surg 66(6):799–804

    Article  PubMed  Google Scholar 

  23. Sasaki GH (2015) The Safety and Efficacy of Cell-Assisted Fat Grafting to Traditional Fat Grafting in the Anterior Mid-Face: An Indirect Assessment by 3D Imaging. Aesthetic Plast Surg 39(6):833–846

    Article  PubMed  Google Scholar 

  24. Zhu M, Xie Y, Zhu Y, Chai G, Li Q (2016) A novel noninvasive three-dimensional volumetric analysis for fat-graft survival in facial recontouring using the 3L and 3M technique. J Plast Reconstr Aesthet Surg 69(2):248–254

    Article  PubMed  Google Scholar 

  25. Choi M, Small K, Levovitz C, Lee C, Fadl A, Karp NS (2013) The volumetric analysis of fat graft survival in breast reconstruction. Plast Reconstr Surg 131(2):185–191

    Article  CAS  PubMed  Google Scholar 

  26. Lv Q, Li X, Qi Y, Gu Y, Liu Z, Ma GE. Volume Retention After Facial Fat Grafting and Relevant Factors: A Systematic Review and Meta-analysis. Aesthetic Plast Surg. 2020.

  27. Kato H, Mineda K, Eto H et al (2014) Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg 133(3):303e–313e

    Article  CAS  PubMed  Google Scholar 

  28. Cai J, Li B, Wang J et al (2018) Tamoxifen-Prefabricated Beige Adipose Tissue Improves Fat Graft Survival in Mice. Plast Reconstr Surg 141(4):930–940

    Article  CAS  PubMed  Google Scholar 

  29. James IB, Bourne DA, DiBernardo G et al (2018) The Architecture of Fat Grafting II: Impact of Cannula Diameter. Plast Reconstr Surg 142(5):1219–1225

    Article  CAS  PubMed  Google Scholar 

  30. Erdim M, Tezel E, Numanoglu A, Sav A (2009) The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. J Plast Reconstr Aesthet Surg 62(9):1210–1214

    Article  PubMed  Google Scholar 

  31. Kirkham JC, Lee JH, Medina MA 3rd, McCormack MC, Randolph MA, Austen WG Jr (2012) The impact of liposuction cannula size on adipocyte viability. Ann Plast Surg 69(4):479–481

    Article  CAS  PubMed  Google Scholar 

  32. Ozsoy Z, Kul Z, Bilir A (2006) The role of cannula diameter in improved adipocyte viability: a quantitative analysis. Aesthet Surg J 26(3):287–289

    Article  CAS  PubMed  Google Scholar 

  33. Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231(3):R77–R99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, McCormick K, Mick G (2003) Nutritional Regulation of White Adipocyte Vascular Endothelial Growth Factor (VEGF). Horm Metab Res 35(04):211–216

    Article  CAS  PubMed  Google Scholar 

  35. Kim KH, Kim YH, Son JE et al (2017) Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res 27(11):1309–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ding SL, Zhang MY, Tang SJ, Yang H, Tan WQ (2015) Effect of Calcium Alginate Microsphere Loaded With Vascular Endothelial Growth Factor on Adipose Tissue Transplantation. Ann Plast Surg 75(6):644–651

    Article  CAS  PubMed  Google Scholar 

  37. Zhang MY, Ding SL, Tang SJ et al (2014) Effect of chitosan nanospheres loaded with VEGF on adipose tissue transplantation: a preliminary report. Tissue Eng Part A 20(17–18):2273–2282

    Article  CAS  PubMed  Google Scholar 

  38. Lu F, Li J, Gao J et al (2009) Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg 124(5):1437–1446

    Article  CAS  PubMed  Google Scholar 

  39. Yi CG, Xia W, Zhang LX et al (2007) VEGF gene therapy for the survival of transplanted fat tissue in nude mice. J Plast Reconstr Aesthet Surg 60(3):272–278

    Article  CAS  PubMed  Google Scholar 

  40. Marks PW (2020) Clear Evidence of Safety and Efficacy Is Needed for Stromal Vascular Fraction Products: Commentary on “Arguments for a Different Regulatory Categorization and Framework for Stromal Vascular Fraction.” Stem Cells Dev. 29(5):263–265

    Article  PubMed  Google Scholar 

  41. Rohrich RJ, Wan D (2019) Making Sense of Stem Cells and Fat Grafting in Plastic Surgery: The Hype, Evidence, and Evolving US Food and Drug Administration Regulations. Plast Reconstr Surg 143(2):417–424

    Article  CAS  Google Scholar 

  42. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19(2):181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keogh JB, Pedersen E, Petersen KS, Clifton PM (2014) Effects of intermittent compared to continuous energy restriction on short-term weight loss and long-term weight loss maintenance. Clin Obes. 4(3):150–156

    Article  CAS  PubMed  Google Scholar 

  44. Sundfor TM, Svendsen M, Tonstad S (2018) Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: A randomized 1-year trial. Nutr Metab Cardiovasc Dis 28(7):698–706

    Article  CAS  PubMed  Google Scholar 

  45. Antoni R, Johnston KL, Collins AL, Robertson MD (2017) Effects of intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc 76(3):361–368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Soonchunhyang University Research Fund and the grant of the Basic Science Research Program through the National Research Foundation (NRF) of Korea (2017R1C1B1004843).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kae Won Cho or Chang Yong Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

All animal procedures were authorized and conducted with ethics approval and guidelines from the Institutional Animal Care and Use Committee of Soonchunhyang University.

Informed Consent

Informed consent is not applicable to this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, H.G., Kim, D.G., Chang, J. et al. “Fasting: An Effective Preconditioning Method to Increase Fat Graft Survival”. Aesth Plast Surg 46, 1439–1449 (2022). https://doi.org/10.1007/s00266-021-02630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-021-02630-8

Keywords

Navigation