Skip to main content

Advertisement

Log in

Healed Porcine Incisions Previously Treated With a Surgical Incision Management System: Mechanical, Histomorphometric, and Gene Expression Properties

  • Original Article
  • Experimental/Special Topics
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Computer and bench models have shown previously that surgical incision management with negative pressure (SIM) immediately decreases lateral tissue tension and increases incisional apposition. Better apposition is known to improve healing. Thus, SIM was hypothesized to improve the quality of incisional healing. This study evaluated the impact that 5 days of SIM had on mechanical properties and associated changes in the histology/histomorphometry and gene expression of healed porcine incisions.

Methods

One incision in each of the 4 pairs of contralateral, sutured, full-thickness incisions in each of 6 Yucatan swine were treated with either SIM (Prevena™ Incision Management System; n = 24 incisions/treatment group) or standard of care (SOC; sterile absorbent abdominal pads; n = 24/group) for 5 days, after which both groups received SOC for an additional 5 days. Biopsies for gene-expression analyses were collected on days 5 (n = 6 pairs/group), 20 (n = 6 pairs/group), and 40 (n = 12 pairs/group). On day 40, the animals were killed, after which healed incisions were harvested for mechanical testing (n = 12/group) and histologic/histomorphometric evaluation (n = 12/group).

Results

Compared with SOC-treated incisions, SIM-treated incisions had significantly improved (p < 0.05) mechanical properties (strain energy density, peak strain) and a narrower scar/healed area in the deep dermis on day 40. Differences in gene expression between SOC- and SIM-treated specimens were observed primarily on day 5. The SIM-treated specimens had significantly fewer genes, which were differentially expressed and showed reduced upregulation of genes associated with inflammation, hypoxia, retardation of reepithelialization, impaired wound healing, and scarring.

Conclusion

Early application of SIM improved the quality of healed porcine incisions in terms of mechanical, histomorphometric, and gene-expression properties.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wilson JA, Clark JJ (2004) Obesity: impediment to postsurgical wound healing. Adv Skin Wound Care 17:426–435

    Article  PubMed  Google Scholar 

  2. Riou JP, Cohen JR, Johnson H Jr (1992) Factors influencing wound dehiscence. Am J Surg 163:324–330

    Article  CAS  PubMed  Google Scholar 

  3. Abbas SM, Hill AG (2009) Smoking is a major risk factor for wound dehiscence after midline abdominal incision: case–control study. ANZ J Surg 79:247–250 1992

    Article  PubMed  Google Scholar 

  4. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525

    Article  CAS  PubMed  Google Scholar 

  5. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21:3250–3261

    Article  CAS  PubMed  Google Scholar 

  6. Gurtner GC, Dauskardt RH, Wong VW, Bhatt KA, Wu K, Vial IN, Padois K, Korman JM, Longaker MT (2011) Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg 254(217–225):2. doi:10.1097/SLA.1090b1013e318220b318159

    Google Scholar 

  7. Prevena™ Incision Management System Instructions for Use for Clinicians. KCI, San Antonio, 2013

  8. Kilpadi DV, Cunningham MR (2011) Evaluation of closed-incision management with negative-pressure wound therapy (CIM): hematoma/seroma and involvement of the lymphatic system. Wound Repair Regen 19:588–596

    Article  PubMed  Google Scholar 

  9. Pachowsky M, Gusinde J, Klein A, Lehrl S, Schulz-Drost S, Schlechtweg P, Pauser J, Gelse K, Brem MH (2011) Negative pressure wound therapy to prevent seromas and treat surgical incisions after total hip arthroplasty. Int Orthop 36:719–722

    Article  PubMed Central  PubMed  Google Scholar 

  10. Glaser D, Farnsworth C, Varley E, Nunn T, Sayad-Shah M, Breisch E, Yaszay B (2012) Negative-pressure wound therapy for closed spine incisions: a pilot study. Wounds 24:308–316

    Google Scholar 

  11. Wilkes RP, Kilpadi DV, Zhao Y, Kazala R, McNulty A (2012) Closed incision management with negative-pressure wound therapy (CIM): biomechanics. Surg Innov 19:67–75

    Article  PubMed  Google Scholar 

  12. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(Suppl 2):S3

    Article  PubMed Central  PubMed  Google Scholar 

  14. Broughton G II, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34S

    Article  CAS  PubMed  Google Scholar 

  15. Liechty KW, Crombleholme TM, Cass DL, Martin B, Adzick NS (1998) Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res 77:80–84

    Article  CAS  PubMed  Google Scholar 

  16. Iocono JA, Colleran KR, Remick DG, Gillespie BW, Ehrlich HP, Garner WL (2000) Interleukin-8 levels and activity in delayed-healing human thermal wounds. Wound Repair Regen 8:216–225

    Article  CAS  PubMed  Google Scholar 

  17. Dressler J, Bachmann L, Muller E (1997) Enhanced expression of ICAM-1 (CD 54) in human skin wounds: diagnostic value in legal medicine. Inflamm Res 46:434–435

    Article  CAS  PubMed  Google Scholar 

  18. Ahluwalia A, Tarnawski AS (2012) Critical role of hypoxia sensor: HIF-1alpha in VEGF gene activation: implications for angiogenesis and tissue injury healing. Curr Med Chem 19:90–97

    Article  CAS  PubMed  Google Scholar 

  19. Erba P, Ogawa R, Ackermann M, Adini A, Miele LF, Dastouri P, Helm D, Mentzer SJ, D’Amato RJ, Murphy GF, Konerding MA, Orgill DP (2011) Angiogenesis in wounds treated by microdeformational wound therapy. Ann Surg 253:402–409

    Article  PubMed Central  PubMed  Google Scholar 

  20. Di Colandrea T, Wang L, Wille J, D’Armiento J, Chada KK (1998) Epidermal expression of collagenase delays wound-healing in transgenic mice. J Invest Dermatol 111:1029–1033

    Article  PubMed  Google Scholar 

  21. Chen L, Wang Z, Li S, Zhao G, Tian M, Sun Z (2012) SFRP2 and slug contribute to cellular resistance to apoptosis in hypertrophic scars. PLoS One 7:e50229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Filsell W, Rudman S, Jenkins G, Green MR (1999) Coordinate upregulation of tenascin C expression with degree of photodamage in human skin. Br J Dermatol 140:592–599

    Article  CAS  PubMed  Google Scholar 

  23. Latijnhouwers MA, Bergers M, Van Bergen BH, Spruijt KI, Andriessen MP, Schalkwijk J (1996) Tenascin expression during wound healing in human skin. J Pathol 178:30–35

    Article  CAS  PubMed  Google Scholar 

  24. Kavalukas SL, Uzgare AR, Bivalacqua TJ, Barbul A (2012) Arginase inhibition promotes wound healing in mice. Surgery 151:287–295

    Article  PubMed  Google Scholar 

  25. Hayes CS, Defeo K, Dang H, Trempus CS, Morris RJ, Gilmour SK (2011) A prolonged and exaggerated wound response with elevated ODC activity mimics early tumor development. Carcinogenesis 32:1340–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dang CM, Beanes SR, Soo C, Ting K, Benhaim P, Hedrick MH, Lorenz HP (2003) Decreased expression of fibroblast and keratinocyte growth factor isoforms and receptors during scarless repair. Plast Reconstr Surg 111:1969–1979

    Article  PubMed  Google Scholar 

  27. Bitto A, Irrera N, Minutoli L, Calo M, Lo Cascio P, Caccia P, Pizzino G, Pallio G, Micali A, Vaccaro M, Saitta A, Squadrito F, Altavilla D (2013) Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice. Clin Sci Lond 125:575–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Eslami A, Gallant-Behm CL, Hart DA, Wiebe C, Honardoust D, Gardner H, Hakkinen L, Larjava HS (2009) Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing. J Histochem Cytochem 57:543–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Matatov T, Reddy KN, Doucet LD, Zhao CX, Zhang WW (2013) Experience with a new negative-pressure incision management system in prevention of groin wound infection in vascular surgery patients. J Vasc Surg 57:791–795

    Article  PubMed  Google Scholar 

  30. Grauhan O, Navasardyan A, Hofmann M, Muller P, Stein J, Hetzer R (2013) Prevention of poststernotomy wound infections in obese patients by negative pressure wound therapy. J Thorac Cardiovasc Surg 145:1387–1392

    Article  PubMed  Google Scholar 

  31. Sullivan TP, Eaglstein WH, Davis SC, Mertz P (2001) The pig as a model for human wound healing. Wound Repair Regen 9:66–76

    Article  CAS  PubMed  Google Scholar 

  32. Dunn MG, Silver FH, Swann DA (1985) Mechanical analysis of hypertrophic scar tissue: structural basis for apparent increased rigidity. J Investig Dermatol 84:9–13

    Article  CAS  PubMed  Google Scholar 

  33. Corr DT, Gallant-Behm CL, Shrive NG, Hart DA (2009) Biomechanical behavior of scar tissue and uninjured skin in a porcine model. Wound Repair Regen 17:250–259

    Article  PubMed  Google Scholar 

  34. Widgerow AD, Chait LA, Stals R, Stals PJ (2000) New innovations in scar management. Aesthetic Plast Surg 24:227–234

    Article  CAS  PubMed  Google Scholar 

  35. Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32:1384–1402

    Article  Google Scholar 

  36. Zhou B, Xu F, Chen CQ, Lu TJ (2010) Strain rate sensitivity of skin tissue under thermomechanical loading. Philos Trans R Soc A Math Phys Eng Sci 368:679–690

    Article  CAS  Google Scholar 

  37. Quirinia A, Viidik A (1991) Freezing for postmortal storage influences the biomechanical properties of linear skin wounds. J Biomech 24:819–823

    Article  CAS  PubMed  Google Scholar 

  38. Sommerlad BC, Creasey JM (1978) The stretched scar: a clinical and histological study. Br J Plast Surg 31:34–45

    Article  CAS  PubMed  Google Scholar 

  39. Zheng L, Pereira PN, Nakajima M, Sano H, Tagami J (2001) Relationship between adhesive thickness and microtensile bond strength. Oper Dent 26:97–104

    CAS  PubMed  Google Scholar 

  40. de Menezes FC, da Silva SB, Valentino TA, Oliveira MA, Rastelli AN, Concalves Lde S (2013) Evaluation of bond strength and thickness of adhesive layer according to the techniques of applying adhesives in composite resin restorations. Quintessence Int 44:9–15

    PubMed  Google Scholar 

  41. Lepault E, Celeste C, Dore M, Martineau D, Theoret CL (2005) Comparative study on microvascular occlusion and apoptosis in body and limb wounds in the horse. Wound Repair Regen 13:520–529

    Article  PubMed  Google Scholar 

  42. Debus ES, Schmidt K, Ziegler UE, Thiede A (2000) The role of growth factors in wound healing. Zentralbl Chir 125(Suppl 1):49–55

    PubMed  Google Scholar 

  43. Pandit A, Ashar R, Feldman D (1999) The effect of TGF-beta delivered through a collagen scaffold on wound healing. J Invest Surg 12:89–100

    Article  CAS  PubMed  Google Scholar 

  44. Cole J, Tsou R, Wallace K, Gibran N, Isik F (2001) Comparison of normal human skin gene expression using cDNA microarrays. Wound Repair Regen 9:77–85

    Article  CAS  PubMed  Google Scholar 

  45. Leffler M, Derrick KL, McNulty A, Malsiner C, Dragu A, Horch RE (2011) Changes of anabolic processes at the cellular and molecular level in chronic wounds under topical negative pressure can be revealed by transcriptome analysis. J Cell Mol Med 15:1564–1571

    Article  CAS  PubMed  Google Scholar 

  46. Scherer SS, Pietramaggiori G, Mathews JC, Prsa MJ, Huang S, Orgill DP (2008) The mechanism of action of the vacuum-assisted closure device. Plast Reconstr Surg 122:786–797

    Article  CAS  PubMed  Google Scholar 

  47. Chvapil M, Chvapil TA (1992) Wound-healing models in the miniature Yucatan pig. In: Swindle MM, Moody DC, Phillips LD (eds) Swine as models in biomedical research. Iowa State University Press, Ames, pp 265–289

    Google Scholar 

Download references

Acknowledgments

The authors are employees of KCI (San Antonio, TX, USA), which sponsored the research presented in this report. The authors gratefully acknowledge Lisa Clausen, BS, Barbara Collins, BS, Balakrishna Haridas, PhD, David Hart, PhD, Jesus Hernandez, MS, Joan Wicks, DVM, PhD, Roberta James, MS, and Ashok Nageswaran, MS for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak V. Kilpadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilpadi, D.V., Lessing, C. & Derrick, K. Healed Porcine Incisions Previously Treated With a Surgical Incision Management System: Mechanical, Histomorphometric, and Gene Expression Properties. Aesth Plast Surg 38, 767–778 (2014). https://doi.org/10.1007/s00266-014-0339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-014-0339-x

Keywords

Navigation