Skip to main content
Log in

Wild zebra finches do not use social information from conspecific reproductive success for nest site choice and clutch size decisions

  • Featured Student Research Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Information about the quality of local habitat can greatly help to improve an individual’s decision-making and, ultimately, its fitness. Nevertheless, little is known about the mechanisms and significance of information use in reproductive decisions, especially in unpredictable environments. We tested the hypothesis that perceived breeding success of conspecifics serves as a cue for habitat quality and hence influences breeding decisions (nest site choice and clutch size), using the zebra finch (Taeniopygia guttata) as a model species. Zebra finches breed opportunistically in the unpredictable, arid zone of Australia. They often inspect the nests of conspecifics, potentially to prospect on conspecific reproductive success, i.e., to collect social information. We conducted a clutch and brood size manipulation to experimentally create the perception of high and low quality areas. In six areas, clutch sizes of almost 300 zebra finch nests were either all increased (N = 3 areas) or reduced (N = 3 areas) throughout one breeding season. The number of breeding pairs and sizes of newly laid clutches were not significantly affected by the manipulated reproductive success of the areas. Thus, zebra finches did not use social cues for their reproductive decisions, which contrasts with findings of species in temperate zones, and could be an adaptation to the high unpredictability of their habitat. Even the personal experience of rebreeding birds did not directly affect their clutch size. Our study suggests that zebra finches employ a high level of opportunism as a key strategy for reproduction. Further, this is the first study to our knowledge using an experimental approach in the wild to demonstrate that decision-making in unpredictable natural environments might differ from decision-making in temperate environments with seasonal breeding.

Significance statement

Social information can help to optimize the behavior of animals. Birds in temperate climates with seasonality use breeding success of others to predict where they should breed. However, very little is known about information use in less predictable environments. In a field experiment, we created a patchy environment by increasing and decreasing brood sizes of wild zebra finches to test if social information is also used in unpredictable conditions. We found no evidence that zebra finches in the Australian outback use social information from their conspecifics when deciding on nest site and clutch size. They probably gather personal information on environmental parameters and the current availability of resources, which might be more reliable than social information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1:1–23, http://CRAN.R-project.org/package=lme4

  • Betts MG, Hadley AS, Rodenhouse N, Nocera JJ (2008) Social information trumps vegetation structure in breeding-site selection by a migrant songbird. Proc R Soc Lond B 275:2257–2263

    Article  Google Scholar 

  • Blount JD, Metcalfe NB, Arnold KE, Surai PF, Monaghan P (2006) Effects of neonatal nutrition on adult reproduction in a passerine bird. Ibis 148:509–514

    Article  Google Scholar 

  • Boulinier T, Danchin E (1997) The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evol Ecol 11:505–517

    Article  Google Scholar 

  • Boulinier T, Danchin E, Monnat J-Y, Doutrelant C, Cadiou B (1996) Timing of prospecting and the value of information in a colonial breeding bird. J Avian Biol 27:252–256

    Article  Google Scholar 

  • Boulinier T, McCoy KD, Yoccoz NG, Gasparini J, Tveraa T (2008) Public information affects breeding dispersal in a colonial bird: kittiwakes cue on neighbours. Biol Lett 4:538–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyd R, Richerson PJ (1988) Culture and the evolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  • Brown CR, Brown MB, Danchin E (2000) Breeding habitat selection in cliff swallows: the effect of conspecific reproductive success on colony choice. J Anim Ecol 69:133–142

    Article  Google Scholar 

  • Bruinzeel LW, van de Pol M (2004) Site attachment of floaters predicts success in territory acquisition. Behav Ecol 15:290–296

    Article  Google Scholar 

  • Cadiou B, Monnat JY, Danchin E (1994) Prospecting in the kittiwake, Rissa tridactyla: different behavioural patterns and the role of squatting in recruitment. Anim Behav 47:847–856

    Article  Google Scholar 

  • Campobello D, Sealy SG (2011a) Nest defence against avian brood parasites is promoted by egg-removal events in a cowbird–host system. Anim Behav 82:885–891

    Article  Google Scholar 

  • Campobello D, Sealy SG (2011b) Use of social over personal information enhances nest defense against avian brood parasitism. Behav Ecol 22:422–428

    Article  Google Scholar 

  • Colegrave N, Ruxton GD (2003) Confidence intervals are a more useful complement to nonsignificant tests than are power calculations. Behav Ecol 14:446–447

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. John Wiley & Sons Ltd, West Sussex

    Book  Google Scholar 

  • Dall SRX, Giraldeau LA, Olsson O, McNamara JM, Stephens DW (2005) Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20:187–193

    Article  PubMed  Google Scholar 

  • Danchin E, Boulinier T, Massot M (1998) Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology 79:2415–2428

    Article  Google Scholar 

  • Danchin E, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    Article  PubMed  CAS  Google Scholar 

  • Doligez B, Danchin E, Clobert J (2002) Public information and breeding habitat selection in a wild bird population. Science 297:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Doligez B, Cadet C, Danchin E, Boulinier T (2003) When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim Behav 66:973–988

    Article  Google Scholar 

  • Doligez B, Pärt T, Danchin E (2004) Prospecting in the collared flycatcher: gathering public information for future breeding habitat selection? Anim Behav 67:457–466

    Article  Google Scholar 

  • Duursma DE, Gallagher RV, Griffith SC (2017) Characterizing opportunistic breeding at a continental scale using all available sources of phenological data: an assessment of 337 species across the Australian continent. Auk 134:509–519

    Article  Google Scholar 

  • Erwin RM, Nichols JD, Eyler TB, Stotts DB, Truitt BR (1998) Modeling colony-site dynamics: a case study of gull-billed terns (Sterna nilotica) in coastal Virginia. Auk 115:970–978

    Article  Google Scholar 

  • Farine DR, Spencer KA, Boogert NJ (2015) Early-life stress triggers juvenile zebra finches to switch social learning strategies. Curr Biol 25:2184–2188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feldman MW, Aoki K, Kumm J (1996) Individual versus social learning: evolutionary analysis in a fluctuating environment. Anthropol Sci 104:209–231

    Article  Google Scholar 

  • Fokkema RW, Ubels R, Tinbergen JM (2016) Great tits trade off future competitive advantage for current reproduction. Behav Ecol 27:1656–1664

    Google Scholar 

  • Fokkema RW, Ubels R, Tinbergen JM (2017) Is parental competitive ability in winter negatively affected by previous springs’ family size? Ecol Evol 7:1410–1420

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsman JT, Seppänen J-T, Nykänen IL (2011) Observed heterospecific clutch size can affect offspring investment decisions. Biol Lett 8:341–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Giraldeau L-A, Caraco T, Valone TJ (1994) Social foraging: individual learning and cultural transmission of innovations. Behav Ecol 5:35–43

    Article  Google Scholar 

  • Griffith SC, Pryke SR, Mariette M (2008) Use of nest-boxes by the zebra finch (Taeniopygia guttata): implications for reproductive success and research. Emu 108:311–319

    Article  Google Scholar 

  • Griffith SC, Holleley CE, Mariette MM, Pryke SR, Svedin N (2010) Low level of extrapair parentage in wild zebra finches. Anim Behav 79:261–264

    Article  Google Scholar 

  • Haywood S, Perrins CM (1992) Is clutch size in birds affected by environmental conditions during growth? Proc R Soc Lond B 249:195–197

    Article  CAS  Google Scholar 

  • Jaakkonen T, Kari A, Forsman JT (2013) Flycatchers copy conspecifics in nest-site selection but neither personal experience nor frequency of tutors have an effect. PLoS One 8:e60395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaakkonen T, Kivelä SM, Meier CM, Forsman JT (2014) The use and relative importance of intraspecific and interspecific social information in a bird community. Behav Ecol 26:55–64

    Article  Google Scholar 

  • Kendal RL, Coolen I, Laland KN (2004) The role of conformity in foraging when personal and social information conflict. Behav Ecol 15:269–277

    Article  Google Scholar 

  • Kendal RL, Coolen I, van Bergen Y, Laland KN (2005) Trade-offs in the adaptive use of social and asocial learning. Adv Stud Behav 35:333–379

    Article  Google Scholar 

  • Laland KN (2004) Social learning strategies. Anim Learn Behav 32:4–14

    Article  Google Scholar 

  • Lemon WC (1993) The energetics of lifetime reproductive success in the zebra finch Taeniopygia guttata. Physiol Zool 66:946–963

    Article  Google Scholar 

  • Mariette MM, Griffith SC (2012a) Conspecific attraction and nest site selection in a nomadic species, the zebra finch. Oikos 121:823–834

    Article  Google Scholar 

  • Mariette MM, Griffith SC (2012b) Nest visit synchrony is high and correlates with reproductive success in the wild zebra finch Taeniopygia guttata. J Avian Biol 43:131–140

    Article  Google Scholar 

  • Mariette MM, Pariser EC, Gilby AJ, Magrath MJ, Pryke SR, Griffith SC (2011) Using an electronic monitoring system to link offspring provisioning and foraging behavior of a wild passerine. Auk 128:26–35

    Article  Google Scholar 

  • McCowan LSC, Mariette MM, Griffith SC (2015) The size and composition of social groups in the wild zebra finch. Emu 115:191–198

    Article  Google Scholar 

  • Morton SR, Stafford Smith DM, Dickman CR, Dunkerley DL, Friedel MH, McAllister RRJ, Reid JRW, Roshier DA, Smith MA, Walsh FJ, Wardle GM, Watson IW, Westoby M (2011) A fresh framework for the ecology of arid Australia. J Arid Environ 75:313–329

    Article  Google Scholar 

  • Parejo D, Oro D, Danchin E (2006) Testing habitat copying in breeding habitat selection in a species adapted to variable environments. Ibis 148:146–154

    Article  Google Scholar 

  • Parejo D, White J, Clobert J, Dreiss A, Danchin E (2007) Blue tits use fledgling quantity and quality as public information in breeding site choice. Ecology 88:2373–2382

    Article  PubMed  Google Scholar 

  • Pärt T, Doligez B (2003) Gathering public information for habitat selection: prospecting birds cue on parental activity. Proc R Soc Lond B 270:1809–1813

    Article  Google Scholar 

  • Perfito N, Zann RA, Bentley GE, Hau M (2007) Opportunism at work: habitat predictability affects reproductive readiness in free-living zebra finches. Funct Ecol 21:291–301

    Article  Google Scholar 

  • Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org

    Google Scholar 

  • Rafacz M, Templeton JJ (2003) Environmental unpredictability and the value of social information for foraging starlings. Ethology 109:951–960

    Article  Google Scholar 

  • Reed JM, Boulinier T, Danchin E, Oring LW (1999) Informed dispersal. In: Nolan V Jr, Ketterson ED, Thompson EF (eds) Current ornithology, vol 15. Springer US, New York, pp 189–259

    Chapter  Google Scholar 

  • Samplonius JM, Kromhout van der Meer IM, Both C (2017) Nest site preference depends on the relative density of conspecifics and heterospecifics in wild birds. Front Zool 14:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt KA, Dall SRX, van Gils JA (2010) The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119:304–316

    Article  Google Scholar 

  • Schuett W, Laaksonen J, Laaksonen T (2012) Prospecting at conspecific nests and exploration in a novel environment are associated with reproductive success in the jackdaw. Behav Ecol Sociobiol 66:1341–1350

    Article  Google Scholar 

  • Schuett W, Koegl BB, Dall SRX, Laaksonen T (2015) Do pied flycatchers use personal or social information for replacement clutch decisions? A field experiment. Ethology 121:686–693

    Article  Google Scholar 

  • Schuett W, Järvistö PE, Calhim S, Velmala W, Laaksonen T (2017) Nosy neighbours: large broods attract more visitors. A field experiment in the pied flycatcher, Ficedula hypoleuca. Oecologia 184:1–12

    Article  Google Scholar 

  • Selman RG, Houston DC (1996) The effect of prebreeding diet on reproductive output in zebra finches. Proc R Soc Lond B 263:1585–1588

    Article  Google Scholar 

  • Slagsvold T (1984) Clutch size variation of birds in relation to nest predation: on the cost of reproduction. J Anim Ecol 53:945–953

    Article  Google Scholar 

  • Stamps J (1987) Conspecifics as cues to territory quality: a preference of juvenile lizards (Anolis aeneus) for previously used territories. Am Nat 129:629–642

    Article  Google Scholar 

  • Thorogood R, Davies NB (2016) Combining personal with social information facilitates host defences and explains why cuckoos should be secretive. Sci Rep 6:19872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valone TJ (2007) From eavesdropping on performance to copying the behavior of others: a review of public information use. Behav Ecol Sociobiol 62:1–14

    Article  Google Scholar 

  • Waas JR, Colgan PW, Boag PT (2005) Playback of colony sound alters the breeding schedule and clutch size in zebra finch (Taeniopygia guttata) colonies. Proc R Soc Lond B 272:383–388

    Article  Google Scholar 

  • Ward MP (2005) Habitat selection by dispersing yellow-headed blackbirds: evidence of prospecting and the use of public information. Oecologia 145:650–657

    Article  PubMed  Google Scholar 

  • Webster MM, Hart PJB (2006) Subhabitat selection by foraging threespine stickleback (Gasterosteus aculeatus): previous experience and social conformity. Behav Ecol Sociobiol 60:77–86

    Article  Google Scholar 

  • Webster MM, Laland KN (2008) Social learning strategies and predation risk: minnows copy only when using private information would be costly. Proc R Soc Lond B 275:2869–2876

    Article  CAS  Google Scholar 

  • Wingfield JC, Hahn TP, Levin R, Honey P (1992) Environmental predictability and control of gonadal cycles in birds. J Exp Zool Part A 261:214–231

    Article  Google Scholar 

  • Zann RA (1996) The zebra finch: a synthesis of field and laboratory studies, vol 5. Oxford University Press, Oxford

    Google Scholar 

  • Zann RA, Morton SR, Jones KR, Burley NT (1995) The timing of breeding by zebra finches in relation to rainfall in Central Australia. Emu 95:208–222

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anika Immer, Marie Hardenbicker, and Kathryn Peiman for valuable assistance in the field. We thank two anonymous reviewers for their constructive comments which helped to improve the quality of this manuscript. This work was supported by “Deutsche Forschungsgemeinschaft” (SCHU 2927/3-1 to WS and SCG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanja B. Brandl.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The work was approved by the Macquarie University Animal Ethics Committee (Animal Research Authority 2015/017) and the Australian Bird and Bat Banding Scheme.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Pruett-Jones

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandl, H.B., Griffith, S.C. & Schuett, W. Wild zebra finches do not use social information from conspecific reproductive success for nest site choice and clutch size decisions. Behav Ecol Sociobiol 72, 114 (2018). https://doi.org/10.1007/s00265-018-2533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-018-2533-3

Keywords

Navigation