Skip to main content
Log in

More than meets the eye: kinship and social organization in giant otters (Pteronura brasiliensis)

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Giant otters live in highly cooperative groups. Behavioral observations suggest that groups are composed of a dominant reproductive pair and their offspring of previous years. We combined genetic data and long-term ecological information to determine genetic relatedness within and between groups to verify that hypothesis. We genotyped 12 polymorphic loci of 50 otters from 13 groups and two transient individuals. The average relatedness within groups (r = 0.23) was high, but the degree of relatedness varied within the groups, including groups of unrelated individuals, contradicting the current social hypothesis of an exclusively parent-brood model. Negative correlations between kinship and distance between territories were higher in females, and on two occasions, dominant females were replaced by related subordinates of the same group. Solitary transients were males, suggesting a tendency of male-biased dispersal. These data, combined with long-term ecological and behavioral information, indicate that direct benefits, such as alloparental care, and acquisition, inheritance, and defense of high-quality territories may drive the evolution of group living of this endangered social carnivore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alho JS, Välimäki K, Merila J (2010) Rhh: an R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Mol Ecol Resour 10:720–722

    Article  PubMed  Google Scholar 

  • Amos B, Schlktterer C, Tautz D (1993) Social structure of pilot whales revealed by analytical DNA profiling. Science 260:670–672

    Article  PubMed  CAS  Google Scholar 

  • Amos W, Worthington Wilmer J, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B 268:2021–2027

    Article  CAS  Google Scholar 

  • Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511

    Article  Google Scholar 

  • Blundell GM, Ben-David M, Groves P, Bowyer RT, Geffen E (2009) Kinship and sociality in coastal river otters: are they related? Behav Ecol 15:705–714

    Article  Google Scholar 

  • Brecht-Munn M, Munn CA (1988) The Amazon’s gregarious giant otters. Anim K 91:34–41

    Google Scholar 

  • Carter SK, Rosas FCW (1997) Biology and conservation of the giant otter Pteronura brasiliensis. Mammal Rev 27:1–26

    Article  Google Scholar 

  • Clutton-Brock T (2002) Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296:69–72

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dallas JF, Carss DN, Marshall F, Koepfli KP, Kruuk H, Piertney SB, Bacon PJ (2000) Sex identification of the Eurasian otter Lutra lutra by PCR typing of spraints. Conserv Genet 1:181–183

    Article  CAS  Google Scholar 

  • Davenport LC (2010) Aid to a declining matriarch in the giant otter (Pteronura brasiliensis). PLoS ONE 5, e11385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

  • DeWoody JA (2005) Molecular approaches to the study of parentage, relatedness, and fitness: practical applications for wild animals. J Wildl Manag 69:1400–1418

    Article  Google Scholar 

  • Di Rienzo A, Peterson A, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Dugdale HL, Macdonald DW, Popo LC, Johnson P (2008) Reproductive skew and relatedness in social groups of European badgers, Meles meles. Mol Ecol 17:1815–1827

    Article  PubMed  Google Scholar 

  • Duplaix N (1980) Observations on the ecology and behavior of the giant otter Pteronura brasiliensis in Suriname. Rev Ecol Terre Vie 34:495–620

    Google Scholar 

  • Evangelista E (2004) Change of partners in a giant otter alpha couple. IUCN Otter Spec Group Bull 21:47–51

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Girman DJ, Mills MGL, Geffen E, Wayne RK (1997) A molecular genetic analysis of social structure, dispersal, and interpack relationships of the African wild dog (Lycaon pictus). Behav Ecol Sociobiol 40:187–198

    Article  Google Scholar 

  • Gittleman J (1989) Carnivore group living: comparative trends. In: Gittleman JL (ed) Carnivore behavior, ecology and evolution. Cornell University Press, New York, pp 183–207

    Chapter  Google Scholar 

  • Gompper ME, Wayne RK (1996) Genetic relatedness among individuals within carnivore societies. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Cornell University Press, New York, pp 429–452

    Google Scholar 

  • Gompper ME, Gittleman JL, Wayne RK (1997) Genetic relatedness, coalitions and social behaviour of white-nosed coatis, Nasua nasua. Anim Behav 53:781–797

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program for calculating F-statistic. J Hered 86:485–486

    Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Griffin AS, West SA (2002) Kin selection: fact and fiction. Trends Ecol Evol 17:15–21

    Article  Google Scholar 

  • Griffin AS, Pemberton JM, Brotherton PNM, Mcllrath G, Gaynor D, Kansky R, O’Riain J, Clutton-Brock TH (2003) A genetic analysis of breeding success in the cooperative meerkat (Suricata suricatta). Behav Ecol 14:472–480

    Article  Google Scholar 

  • Groenendijk J, Hajek F, Duplaix N et al. (2005) Surveying and monitoring distribution and population trends of the giant otter (Pteronura brasiliensis). Guidelines for a standardisation of survey methods as recommended by the giant otter section of the IUCN/SSC Otter Specialist Network. Habitat 16:1–100

  • Groenendijk J, Hajek F, Johnson PJ, Macdonald DW, Calvimontes J, Staib E, Schenck C (2014) Demography of the Giant Otter (Pteronura brasiliensis) in Manu National Park, South-Eastern Peru: implications for conservation. PLoS ONE 9, e106202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I J Theor Biol 7:1–16

    Article  PubMed  CAS  Google Scholar 

  • Harris MA, Tomas W, Mourão G, Da Silva CJ, Guimarães E, Sonoda F, Fachim E (2005) Safeguarding the Pantanal wetlands: threats and conservation initiatives. Conserv Biol 19:714–720

    Article  Google Scholar 

  • Iossa G, Soulsbury CD, Baker PJ, Edwards KJ, Harris S (2009) Behavioral changes associated with a population density decline in the facultatively social red fox. Behav Ecol 20:385–395

    Article  Google Scholar 

  • IUCN—International Union for Conservation of Nature and Natural Resources (2011) IUCN Red List of Threatened Species, http://www.iucnredlist.org. Accessed 26 July 2014

  • Johnson DD, MacDonald DW, Dickman AJ (2000) An analysis and review of models of the sociobiology of the Mustelidae. Mammal Rev 30:171–196

    Article  Google Scholar 

  • Jones AG (2005) GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol 5:708–711

    Article  CAS  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Keane B, Waser PM, Creel SR, Cree NM, Elliott LF, Minchella DJ (1994) Subordinate reproduction in dwarf mongooses. Anim Behav 47:65–75

    Article  Google Scholar 

  • Kruuk H (2006) Otters: ecology, behaviour and conservation. Oxford University Press, New York

    Book  Google Scholar 

  • Lawson Handley LJ, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578

    Article  PubMed  CAS  Google Scholar 

  • Leuchtenberger C, Mourão G (2008) Social organization and territoriality of giant otters (Carnivora: Mustelidae) in a seasonally flooded savanna in Brazil. Sociobiology 52:257–270

    Google Scholar 

  • Leuchtenberger C, Mourão G (2009) Scent-marking of giant otter in the Southern Pantanal, Brazil. Ethology 115:210–216

    Article  Google Scholar 

  • Leuchtenberger C, Oliveira-Santos LGR, Magnusson W, Mourão G (2013) Space use by giant otter groups in the Brazilian Pantanal. J Mammal 94:320–330

    Article  Google Scholar 

  • Leuchtenberger C, Magnusson W, Mourão G (2015) Territoriality of giant otter groups in an area with seasonal flooding. PLoS ONE 10, e0126073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lima DS, Marmontel M, Bernard E (2013) Reoccupation of historical areas by the endangered giant river otter Pteronura brasiliensis (Carnivora: Mustelidae) in Central Amazonia, Brazil. Mammalia 78:177–184

    Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Macdonald DW (1983) The ecology of carnivore social behaviour. Nature 301:379–384

    Article  Google Scholar 

  • Mourão G, Carvalho L (2001) Cannibalism among Giant Otters (Pteronura brasiliensis). Mammalia 65:225–227

    Google Scholar 

  • Packer C, Gilbert DA, Pusey AE, O’Brien SJ (1991) A molecular genetic analysis of kinship and cooperation in African lions. Nature 351:562–565

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Randall DA, Pollinger JP, Wayne RK, Tallents LA, Johnson PJ, Macdonald DW (2007) Inbreeding is reduced by female-biased dispersal and mating behavior in Ethiopian wolves. Behav Ecol 18:579–589

    Article  Google Scholar 

  • Ribas C (2004) Desenvolvimento de um programa de monitoramento em longo prazo das ariranhas (Pteronura brasiliensis) no Pantanal brasileiro. Dissertation, Universidade Federal de Mato Grosso do Sul

  • Ribas C (2012) Grau de parentesco e relações sociais em ariranhas (Pteronura brasiliensis). Thesis, Instituto Nacional de Pesquisas da Amazônia

  • Ribas C, Mourão G (2004) Intraspecific agonism between giant otter groups. IUCN Otter Spec Group Bull 21:89–93

    Google Scholar 

  • Ribas C, Vasconcellos AV, Mourão G, Magnusson W, Sole-Cava AM, Cunha HA (2011) Polymorphic microsatellite loci from the endangered Giant Otter (Pteronura brasiliensis). Conserv Genet Resour 3:769–771

    Article  Google Scholar 

  • Ribas C, Damasceno G, Magnusson W, Leuchtenberger C, Mourão G (2012) Giant otters feeding on caiman: evidence for an expanded trophic niche of recovering populations. Stud Neotrop Fauna E 47:19–23

    Article  Google Scholar 

  • Robinson SP, Simmons LW, Kennington WJ (2013) Estimating relatedness and inbreeding using molecular markers and pedigrees: the effect of demographic history. Mol Ecol 22:5779–5792

    Article  PubMed  CAS  Google Scholar 

  • Rosas FCW, de Mattos GE (2003) Notes on giant otter (Pteronura brasiliensis) behavior in the lake of Balbina Hydroelectric Power Station, Amazonas, Brazil. Lajam 2:127–129

    Article  Google Scholar 

  • Rosas F, Cabral M, De Mattos G, Silva R (2009) Parental and alloparental care of giant otters (Pteronura brasiliensis) (Carnivora, mustelidae) in Balbina hydroelectric lake, Amazonas, Brazil. Sociobiology 54:919–924

    Google Scholar 

  • Schweizer J (1992) Ariranhas no Pantanal: Ecologia e Comportamento da Pteronura brasiliensis. Edibran-Editora Brasil Natureza Ltda, Curitiba

    Google Scholar 

  • Spong G, Stone J, Creel S, Bjorklund M (2002) Genetic structure of lions (Panthera leo L.) in the Selous Game Reserve: implications for the evolution of sociality. J Evol Biol 15:945–953

    Article  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301

    Article  PubMed  Google Scholar 

  • Uscamaita MR, Bodmer R (2009) Recovery of the endangered giant otter Pteronura brasiliensis on the Yavarí-Mirin and Yavarí Rivers: a success story for CITES. Oryx 44:83–88

    Article  Google Scholar 

  • Van Horn RC, Engh AL, Scribner KT, Funk SM, Holekamp KE (2004) Behavioural structuring of relatedness in the spotted hyena (Crocuta crocuta) suggests direct fitness benefits of clan-level cooperation. Mol Ecol 13:449–458

    Article  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Wagner AP, Creel S, Frank LG, Kalinowski ST (2007) Patterns of relatedness and parentage in an asocial, polyandrous striped hyena population. Mol Ecol 16:4356–4369

    Article  PubMed  CAS  Google Scholar 

  • West SA, Pen I, Griffin AS (2002) Cooperation and competition between relatives. Science 296:72–75

    Article  PubMed  CAS  Google Scholar 

  • West SA, Griffin AS, Garder A (2006) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J Evol Biol 20:415–432

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Federal University of Mato Grosso do Sul for providing logistic support. CNPq granted a scholarship to CR (# 141307/2007-2), and a research grant to GM to support the field and some of the laboratory costs (# 476939/2008-9). Laboratory support was also provided by a grant from FAPERJ-RJ. We are indebted to I. T. Carvalho for fieldwork assistance, to C. Leuchtenberger for providing blood and mucus samples, and C.A. Zucco and L.G. Oliveira-Santos for data analysis procedures. We thank L. Damasceno, S. Damasceno, and C. Marsiglia for providing essential support with the equipment importation process, and Gustavo Ribas for helping with the figures. We thank M. Gompper, E. Eizirik, C. Myiaki, I. Farias, T. Lacher, V. da Silva, F. Azevedo, and F. Rosas for suggestions to early versions of this manuscript. We also thank N. Divine who kindly revised the English of the final version of the manuscript and two anonymous reviewers that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ribas.

Ethics declarations

Compliance with ethical standards

The experiments comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by A. I. Schulte-Hostedde

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribas, C., Cunha, H.A., Damasceno, G. et al. More than meets the eye: kinship and social organization in giant otters (Pteronura brasiliensis). Behav Ecol Sociobiol 70, 61–72 (2016). https://doi.org/10.1007/s00265-015-2025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-2025-7

Keywords

Navigation