Skip to main content
Log in

Proximate and ultimate explanations of mammalian sex allocation in a marsupial model

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Offspring sex ratios in mammals vary in potentially adaptive yet unpredictable ways. An integrative approach that simultaneously examines proximate and ultimate explanations of mammalian sex ratios would greatly advance the field. We examined the importance of maternal glucose and stress hormones for offspring sex (male or female) as mechanisms associated with the Trivers–Willard and the local resource competition hypotheses of sex allocation. We tested this framework in a marsupial mammal, the tammar wallaby (Macropus eugenii). Mothers that were better able to maintain body condition over the driest part of the year, a presumptive proxy for local resource availability, were more likely to produce daughters (the philopatric sex), consistent with local resource competition. Maternal glucose was correlated with offspring sex, but in the opposite direction than we predicted—higher maternal glucose was associated with female pouch young. These patterns, however, were not consistent across the 2 years of our study. Maternal stress hormone metabolites measured from fecal samples did not predict glucose or offspring sex. A causative glucose mechanism may underlie an adaptive strategy for mothers with high local resources (high glucose) to produce philopatric daughters that will benefit from inheriting resource access. Examining species-specific relationships between glucose and offspring sex across mammals could provide crucial insight into the disparate ecological and selective pressures faced by mammals with respect to offspring sex ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banks SC, Knight EJ, Dubach JE, Lindenmayer DB (2008) Microhabitat heterogeneity influences offspring sex allocation and spatial kin structure in possums. J Animal Ecol 77:1250–1256

    Article  Google Scholar 

  • Barker JM (1961) Metabolism of carbohydrate and volatile fatty acids in marsupial, Setonix brachyurus. Q J Exp Physiol CMS 46:54–68

    CAS  Google Scholar 

  • Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A (2010) Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci U S A 107:3394–3399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blumstein D, Evans CS, Daniel JC (1999) An experimental study of behavioural group size effects in tammar wallabies, Macropus eugenii. Anim Behav 58:351–360

    Article  PubMed  Google Scholar 

  • Blumstein DT, Ardron JG, Evans CS (2002a) Kin discrimination in a macropod marsupial. Ethology 108:815–823

    Article  Google Scholar 

  • Blumstein DT, Daniel JC, Ardron JG, Evans CS (2002b) Does feeding competition influence tammar wallaby time allocation? Ethology 108:937–945

    Article  Google Scholar 

  • Blumstein DT, Daniel JC, Springett BP (2004) A test of the multi-predator hypothesis: rapid loss of antipredator behavior after 130 years of isolation. Ethology 110:919–934

    Article  Google Scholar 

  • Bonier F, Martin PR, Wingfield JC (2007) Maternal corticosteroids influence primary offspring sex ratio in a free-ranging passerine bird. Behav Ecol 18:1045–1050

    Article  Google Scholar 

  • Cameron EZ (2004) Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc R Soc Lond B 271:1723–1728

    Article  Google Scholar 

  • Cameron EZ, Lemons PR, Bateman PW, Bennett NC (2008) Experimental alteration of litter sex ratios in a mammal. Proc R Soc Lond B 275:323–327

    Article  Google Scholar 

  • Catling PC, Vinson GP (1976) Adrenocortical hormones in the neonate and pouch young of the tammar wallaby, Macropus eugenii. J Endocrinol 69:447–448

    Article  CAS  PubMed  Google Scholar 

  • Chambers BK (2009) Human disturbance affects the ecology and population dynamics of the tammar wallaby, Macropus eugenii, on Garden Island. Dissertation, University of Western Australia, Western Australia

    Google Scholar 

  • Chambers BK, Bencini R (2010) Impact of human disturbance on the population dynamics and ecology of tammar wallabies on Garden Island, Western Australia. In: Coulson G, Eldridge M (eds) Macropods: the biology of kangaroos, wallabies and rat-kangaroos. CSIRO, Collingwood, pp 211–218

    Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Clark AB (1978) Sex ratio and local resource competition in a prosimian primate. Science 201:163–165

    Article  CAS  PubMed  Google Scholar 

  • Cockburn A (1994) Adaptive sex allocation by brood reduction in Antechinus. Behav Ecol Sociobiol 35:53–62

    Article  Google Scholar 

  • Cockburn A, Scott MP, Dickman CR (1985) Sex ratio and intrasexual kin competition in mammals. Oecologia 66:427–429

    Article  Google Scholar 

  • Cooley H, Janssens PA (1977) Metabolic effects of infusion of cortisol and adrenocorticotrophin in the tammar wallaby (Macropus eugenii Desmarest). Gen Comp Endocrinol 33:352–358

    Article  CAS  PubMed  Google Scholar 

  • Cork SJ, Dove H (1989) Lactation in the tammar wallaby (Macropus eugenii). 2. Intake of milk components and maternal allocation of energy. J Zool 219:399–409

    Article  Google Scholar 

  • Creel S, Dantzer B, Goymann W, Rubenstein DR (2013) The ecology of stress: effects of the social environment. Funct Ecol 27:66–80

    Article  Google Scholar 

  • Croft DB (1989) Social organization of the Macropodoidea. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, wallabies and rat-kangaroos. Surrey Beatty & Sons Pty Limited, Chipping Norton, pp 505–525

    Google Scholar 

  • Davison MJ, Ward SJ (1998) Prenatal bias in sex ratios in a marsupial, Antechinus agilis. Proc R Soc Lond B 265:2095–2099

    Article  CAS  Google Scholar 

  • Ewen KR, Templesmith PD, Bowden DL, Marinopoulos J, Renfree MB, Yan H (1993) DNA-fingerprinting in relation to male-dominance and paternity in a captive colony of tammar wallabies (Macropus eugenii). J Reprod Fert 99:33–37

    Article  CAS  Google Scholar 

  • Gam AE, Mendonça MT, Navara KJ (2011) Acute corticosterone treatment prior to ovulation biases offspring sex ratios towards males in zebra finches Taeniopygia guttata. J Avian Biol 42:253–258

    Article  Google Scholar 

  • Gardner DK, Larman MG, Thouas GA (2010) Sex-related physiology of the preimplantation embryo. Mol Hum Reprod 16:539–547

    Article  CAS  PubMed  Google Scholar 

  • Goltsman M, Kruchenkova EP, Sergeev S, Johnson PJ, Macdonald DW (2005) Effects of food availability on dispersal and cub sex ratio in the Mednyi Arctic fox. Behav Ecol Sociobiol 59:198–206

    Article  Google Scholar 

  • Green B, Merchant JC, Newgrain K (1988) Milk consumption and energetics of growth in pouch young of the tammar wallaby, Macropus eugenii. Aust J Zool 36:217–227

    Article  Google Scholar 

  • Gutierrez-Adan A, Granados J, Pintado B, de la Fuente J (2001) Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro. Reprod Fert Develop 13:361–365

    Article  CAS  Google Scholar 

  • Helle S, Laaksonen T, Adamsson A, Paranko J, Huitu O (2008) Female field voles with high testosterone and glucose levels produce male-biased litters. Anim Behav 75:1031–1039

    Article  Google Scholar 

  • Hewison AJM, Gaillard J-M (1999) Successful sons or advantaged daughters? The Trivers–Willard model and sex-biased maternal investment in ungulates. Trends Ecol Evol 14:229–234

    Article  PubMed  Google Scholar 

  • Hiraiwa-Hasegawa M (1993) Skewed sex ratios in primates: should high-ranking mothers have daughters or sons? Trends Ecol Evol 8:395–400

    Article  CAS  PubMed  Google Scholar 

  • Hume ID (1982) Digestive physiology and nutrition of marsupials. Cambridge University Press, Cambridge

    Google Scholar 

  • Hynes EF (2005) Mating sequence, dominance and paternity success in captive male tammar wallabies. Reproduction 130:123–130

    Article  CAS  PubMed  Google Scholar 

  • Inns RW (1980) Ecology of the Kangaroo Island wallaby, Macropus eugenii (Desmarest) in Flinders Chase National Park. Dissertation, University of Adelaide, Kangaroo Island

    Google Scholar 

  • Isaac JL, Krockenberger AK, Johnson CN (2005) Adaptive sex allocation in relation to life-history in the Common brushtail possum, Trichosurus vulpecula. J Anim Ecol 74:552–558

    Article  Google Scholar 

  • Janssens PA, Hinds LA (1981) Long-term effects of corticosteroid administration in the tammar wallaby, Macropus eugenii. Gen Comp Endocrinol 45:56–60

    Article  CAS  PubMed  Google Scholar 

  • Johnson CN (1988) Dispersal and the sex ratio at birth in primates. Nature 332:726–728

    Article  CAS  PubMed  Google Scholar 

  • Johnson CN (1989) Dispersal and philopatry in the Macropodoids. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, wallabies and rat-kangaroos. Surrey Beatty & Sons Pty Limited, Chipping Norton, pp 593–602

    Google Scholar 

  • Johnson CN, Ritchie EG (2002) Adaptive biases in offspring sex ratios established before birth in a marsupial, the Common brushtail possum Trichosurus vulpecula. Behav Ecol 13:653–656

    Article  Google Scholar 

  • Johnson CN, Clinchy M, Taylor AC, Krebs CJ, Jarman PJ, Payne A, Ritchie EG (2001) Adjustment of offspring sex ratios in relation to the availability of resources for philopatric offspring in the Common brushtail possum. Proc R Soc Lond B 268:2001–2005

    Article  CAS  Google Scholar 

  • Julliard R (2000) Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios. Behavioral Ecology 11:421–428

    Google Scholar 

  • Kruuk LE, Clutton-Brock TH, Albon SD, Pemberton JM, Guinness FE (1999) Population density affects sex ratio variation in red deer. Nature 399:459–461

    Article  CAS  PubMed  Google Scholar 

  • Larson MA, Kimura K, Kubisch HM, Roberts RM (2001) Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-tau. Proc Natl Acad Sci U S A 98:9677–9682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Love OP, Chin EH, Wynne‐Edwards KE, Williams TD (2005) Stress hormones: a link between maternal condition and sex‐biased reproductive investment. Am Nat 166:751–766

    Article  PubMed  Google Scholar 

  • MacDonald AJ, FitzSimmons NN, Chambers B, Renfree MB, Sarre SD (2013) Sex-linked and autosomal microsatellites provide new insights into island populations of the tammar wallaby. Heredity 2013:1–10

    Google Scholar 

  • Martin JGA, Festa-Bianchet M (2011) Sex ratio bias and reproductive strategies: what sex to produce when? Ecology 92:441–449

    Article  PubMed  Google Scholar 

  • McKenzie S, Deane EM (2003) The effects of age, season, and gender on serum cortisol levels in the tammar wallaby, Macropus eugenii. Gen Comp Endocrinol 133:273–278

    Article  CAS  PubMed  Google Scholar 

  • McKenzie S, Deane EM (2005) Faecal corticosteroid levels as an indicator of well-being in the tammar wallaby, Macropus Eugenii. Comp Biochem Phys A 140:81–87

    Article  CAS  Google Scholar 

  • McKenzie S, Deane EM, Burnett L (2004) Are serum cortisol levels a reliable indicator of wellbeing in the tammar wallaby, Macropus eugenii? Comp Biochem Phys A 138:341–348

    Article  CAS  Google Scholar 

  • Miller EJ, Eldridge MBD, Herbert CA (2010) Dominance and paternity in the tammar wallaby. In: Coulson G, Eldridge M (eds) Macropods: the biology of kangaroos, wallabies and rat-kangaroos. CSIRO, Collingwood, pp 77–86

    Google Scholar 

  • Pelletier F, Réale D, Garant D, Coltman DW, Festa-Bianchet M (2007) Selection on heritable seasonal phenotypic plasticity of body mass. Evolution 61:1969–1979

    Article  PubMed  Google Scholar 

  • Pike TW, Petrie M (2005) Maternal body condition and plasma hormones affect offspring sex ratio in peafowl. Anim Behav 70:745–751

    Article  Google Scholar 

  • Pike TW, Petrie M (2006) Experimental evidence that corticosterone affects offspring sex ratios in quail. Proc R Soc Lond B 273:1093–1098

    Article  CAS  Google Scholar 

  • Poole WE, Simms NG, Wood JT, Luboloa M (1991) Tables for age determination of the Kangaroo Island tammar wallaby (Macropus eugenii) from body measurements. Technical Memorandum no. 32. CSIRO, Canberra

    Google Scholar 

  • Pryke SR, Rollins LA, Buttemer WA, Griffith SC (2011) Maternal stress to partner quality is linked to adaptive offspring sex ratio adjustment. Behav Ecol 22:717–722

    Article  Google Scholar 

  • Robert KA, Braun S (2012) Milk composition during lactation suggests a mechanism for male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE 7:e51099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robert KA, Schwanz LE (2011) Emerging sex allocation research in mammals: marsupials and the pouch advantage. Mammal Rev 41:1–22

    Article  Google Scholar 

  • Robert KA, Schwanz LE (2013) Monitoring the health status of free-ranging tammar wallabies using haematology, serum biochemistry and parasite load. J Wildlife Manag 77:1232–1243

    Article  Google Scholar 

  • Robert KA, Schwanz LE, Mills HR (2009) Offspring sex varies with maternal investment ability: empirical demonstration based on cross-fostering. Biol Lett 6:242–245

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryan CP, Anderson WG, Gardiner LE, Hare JF (2012) Stress-induced sex ratios in ground squirrels: support for a mechanistic hypothesis. Behav Ecol 23:160–167

    Article  Google Scholar 

  • Schwanz LE, Robert KA (2012) Reproductive ecology of wild tammar wallabies in natural and developed habitats on Garden Island, Western Australia. Aust J Zool 60:111–119

    Article  Google Scholar 

  • Schwanz LE, Bragg JG, Charnov EL (2006) Maternal condition and facultative sex ratios in populations with overlapping generations. Am Nat 168:521–530

    Article  PubMed  Google Scholar 

  • Sheldon BC, West SA (2004) Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am Nat 163:40–54

    Article  PubMed  Google Scholar 

  • Silk JB (1983) Local resource competition and facultative adjustment of sex ratios in relation to competitive abilities. Am Nat 121:56–66

    Google Scholar 

  • Simpson MJA, Simpson AE (1982) Birth sex ratios and social rank in rhesus monkey mothers. Nature 300:440–441

    Google Scholar 

  • Spindler RE, Renfree MB, Shaw G, Gardner DK (1998) Reactivating tammar wallaby blastocysts oxidize glucose. Biol Reprod 58:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Sunnucks P, Taylor AC (1997) Sex of pouch young related to maternal weight in Macropus eugenii and M. parma (Marsupialia: Macropodidae). Aust J Zool 45:573–578

    Article  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  CAS  PubMed  Google Scholar 

  • Tyndale-Biscoe H, Renfree MB (1987) Reproductive physiology of marsupials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Warner DA, Radder RS, Shine R (2009) Corticosterone exposure during embryonic development affects offspring growth and sex ratios in opposing directions in two lizard species with environmental sex determination. Physiol Biochem Zool 82:363–371

    Article  PubMed  Google Scholar 

  • Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL (2000) A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen Comp Endocrinol 120:260–275

    Article  CAS  PubMed  Google Scholar 

  • West SA (2009) Sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Wild G (2006) Sex ratios when helpers stay at the nest. Evolution 60:2012–2022

    Article  PubMed  Google Scholar 

  • Wild G, West SA (2007) A sex allocation theory for vertebrates: combining local resource competition and condition‐dependent allocation. Am Nat 170:E112–E128

    Article  PubMed  Google Scholar 

  • Williamson P, Fletcher TP, Renfree MB (1990) Testicular development and maturation of the hypothalamic-pituitary-testicular axis in the male tammar, Macropus eugenii. Reproduction 88:549–557

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted with the permission of the Australian Department of Defence. We thank J. Wann and T. Smith for assistance in accessing the animals and research facilities, and B. Chambers and R. Bencini for advice on research design, logistics, loaned traps, and lodging. Numerous field assistants helped with the trapping. Comments from C. Johnson, M. Jennions, and D. Reznick improved the manuscript. We thank E. Berkeley, F. Krikowa, B. Maher, R. McCuaig, S. Thomas, and the University of Canberra Faculty of Applied Science Molecular Lab for equipment, space, advice, and assistance with the hormonal analyses. The research was funded by a U.S. National Science Foundation International Research Fellowship (LES), a University of Western Australia Postdoctoral Research Fellowship (KAR), University of Western Australia Research Grants Scheme (KAR), and the Australian Department of Defence (KAR and LES).

Ethical standards

This research was conducted in compliance with ethical standards in Australia, under the ethical approval of the University of Western Australia’s Animal Ethics Committee (approval: RA/3/100/897) and Department of Environment and Conservation Research approval (permits: SF007185 and SF007651).

Conflict of interest

The authors have no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa E. Schwanz.

Additional information

Communicated by A. I. Schulte-Hostedde

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwanz, L.E., Robert, K.A. Proximate and ultimate explanations of mammalian sex allocation in a marsupial model. Behav Ecol Sociobiol 68, 1085–1096 (2014). https://doi.org/10.1007/s00265-014-1720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1720-0

Keywords

Navigation