Skip to main content
Log in

Context-dependent acceptance of non-nestmates in a primitively eusocial insect

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The benefits of cooperation are essential in driving group formation. However, an individual can gain significant benefits by acting selfishly at a substantial cost to others in the group. Thus, group members must find a balance between accepting and rejecting potential new members. Here, I explore the factors that mediate acceptance of non-related individuals during the period of group establishment in the primitively eusocial wasp Mischocyttarus mexicanus. In this species, group composition changes during establishment, with non-related females (non-nestmates) sometimes accepted into a foreign colony. By experimentally introducing non-nestmates to newly established colonies, I test the hypothesis that acceptance threshold of nestmates towards non-nestmates shifts depending on the ecological context, as predicted by the Optimal Acceptance Threshold Model. I explored how non-nestmate age (young vs. old), stage of colony establishment (early vs. late), initial behavior of the non-nestmates (non-aggressive vs. aggressive), and the behavioral response by nestmates (non-aggressive vs. aggressive) affected the rates of acceptance. My results show an effect of both non-nestmate age and stage of colony development on non-nestmate acceptance. Young non-nestmates were more frequently accepted in early than in late colonies. Late colonies more frequently rejected both young and old non-nestmates, suggesting a cost of accepting potential usurpers into late colonies. Surprisingly, non-nestmate aggressive behavior did not have a direct effect on their acceptance, but it triggered an aggressive response from nestmates. These findings reveal a shift in the acceptance threshold, suggesting an effect of the social context and the specific needs of a colony on non-nestmate acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Arathi HS, Shakarad M, Gadagkar R (1997) Factors influencing the acceptance of alien conspecifics onto established nests of the primitively eusocial wasp, Ropadilia marginata. J Ins Behav 10:343–351

    Article  Google Scholar 

  • Brown JL (1987) Helping and communal breeding in birds: ecology and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Buczkowski G, Silverman J (2005) Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim Beh 69:741–949

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Soc Method Res 33:261–305

    Article  Google Scholar 

  • Cant MA, Field J (2001) Helping effort and future fitness in cooperative animal societies. Proc R Soc Lond B 268:1959–1964

    Article  CAS  Google Scholar 

  • Carpenter JM, Hunt JH, Strassmann JE (2009) Mischocyttarus mexicanus cubicola: major extension of its range to Texas (Hymenoptera: Vespidae). Entomol Am 115:95–96

    Google Scholar 

  • Caswell H (2001) Matrix population models. Construction, analysis and interpretation. Sinauer, Sunderland, pp 333–334

  • Cervo R, Lorenzi MC (1996) Behaviour in usurpers and late joiners of Polistes biglumis bimaculatus (Hymenoptera, Vespidae). Ins Soc 43:255–266

    Article  Google Scholar 

  • Clouse R (1995) Nest usurpation and intercolonial cannibalism in Mischocyttarus mexicanus (Hymenoptera: Vespidae). J Kansas Entomol Soc 68:67–73

    Google Scholar 

  • Clouse R (2001) Some effects of group size on the output of beginning nests of Mischocyttarus mexicanus (Hymenoptera: Vespidae). Fla Entomol 84:418–425

    Article  Google Scholar 

  • Couvillon MJ, Roy GF, Ratnieks FLW (2009) Recognition errors by honey bee (Apis mellifera) guards demonstrate overlapping cues in conspecific recognition. J Apicult Res 48:225–232

    Article  Google Scholar 

  • Couvillon MJ, Zweden JS, Ratnieks FLW (2012) Model of collective decision-making in nestmate recognition fails to account for individual discriminator responses and non-independent discriminator errors. Behav Ecol Sociobiol 66:339–341

    Article  Google Scholar 

  • Couvillon MJ, Segers FHID, Cooper-Bownan R, Truslove G, Nascimiento FS, Nascimiento FS, Ratnieks FSL (2013) Context affects nestmate recognition errors in honey bees and stingless bees. J Exp Biol 216:3055–3061

    Article  PubMed  Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, Oxford

    Google Scholar 

  • Downs SG, Ratnieks FLW (2000) Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model. Beh Ecol 11:326–333

    Article  Google Scholar 

  • Dugatkin LA (1997) Cooperation among animals. Oxford University Press, Oxford

    Google Scholar 

  • Field J, Cronin A, Bridge C (2006) Future fitness and helping in social queues. Nature 441:214–217. doi:10.1038/nature04560

    Article  CAS  PubMed  Google Scholar 

  • Foster KR (2009) A defense of sociobiology. Cold Spring Harbor Symp Quant Biol 74:403–418. doi:10.1101/sqb.2009.74.041

    Article  CAS  PubMed  Google Scholar 

  • Gadagkar R (1985) Kin recognition in social insects and other animals—a review of recent findings and a consideration of their relevance for the theory of kin selection. Proc Indian Acad Sci (Anim Sci) 94:587–621

    Article  Google Scholar 

  • Gamboa GJ, Reeve HK, Ferguson ID, Wacker TL (1986a) Nestmate recognition in social wasps: the origin and acquisition of recognition odours. Anim Behav 34:685–695

    Article  Google Scholar 

  • Gamboa GJ, Reeve HK, Pfenning DW (1986b) The evolution and ontogeny of nestmate recognition in social wasps. Annu Rev Entomol 31:431–454

    Article  Google Scholar 

  • Gamboa GJ, Reeves HK, Holmes WG (1991a) Conceptual issues and methodology in kin-recognition research: a critical discussion. Ethol 88:109–127

    Article  Google Scholar 

  • Gamboa GJ, Foster RL, Scope JA, Bitterman AM (1991b) Effects of stage of colony cycle, context, and intercolony distance on conspecific tolerance by paper wasps (Polistes fuscatus). Behav Ecol Sociobiol 29:87–94

    Article  Google Scholar 

  • Gamboa GJ (1996) Kin recognition in social wasps. In: Turillazzi S, West-Eberhard MJ (eds) Natural history and the evolution of paper wasps. Oxford University Press, Oxford, pp 161–177

    Google Scholar 

  • Gamboa GJ (2004) Kin recognition in eusocial wasps. Ann Zool Fennici 41:789–808

    Google Scholar 

  • Gunnels CW (2007) Seasonally variable eusocially selected traits in the paper wasp, Mischocyttarus mexicanus. Ethol 113:648–660

    Article  Google Scholar 

  • Gunnels CW, Dubrovski A, Avalos A (2008) Social interactions as an ecological constrain in a eusocial insect. Anim Behav 75:681–691

    Article  Google Scholar 

  • Hamilton WD (1964) The evolution of social behavior. J Theor Biol 7:1–52

    Article  CAS  PubMed  Google Scholar 

  • Heinze J (2010) Conflict and conflict resolution in social insects. In: Kappeler, P (ed) Animal behavior: evolution and mechanisms. Springer, Heidelberg

  • Hermann HR, Gonzalas JM, Hermann BS (1985) Mischocyttarus mexicanus cubicola (Hymenoptera), distribution and nesting plants. Fla Entomol 68:609–614

    Article  Google Scholar 

  • Hsu YY, Early RL, Wolf LL (2006) Modulation of aggressive behavior by fighting experience: mechanisms and contest outcomes. Biol Rev 81:33–74

    PubMed  Google Scholar 

  • Itô Y (1993) Behaviour and social evolution of wasps. Oxford University Press, Oxford, pp 53–65

    Google Scholar 

  • Johnson BR, van Wilgenburg E, Tsutsui ND (2011) Nestmate recognition in social insects: overcoming physiological constraints with collective decision making. Behav Ecol Sociobiol 65:935–944

    Article  PubMed Central  PubMed  Google Scholar 

  • Judd TM (1998) Defensive behavior of colonies of the paper wasp, Polistes fuscatus, against vertebrate predators over the colony cycle. Ins Soc 45:197–208

    Article  Google Scholar 

  • Klahn JE (1988) Instraspecific comb usurpation in the social wasp Polistes fuscatus. Behav Ecol Sociobiol 23:1–8

    Article  Google Scholar 

  • Koenig WD, Dickinson JL (2004) Ecology and evolution of cooperative breeding in birds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kûdo K, Tsuchida K, Mateus S, Zucchi R (2007) Nestmate recognition in a neotropical polygynous wasp. Insect Soc 54:29–33

    Article  Google Scholar 

  • Leadbeater E, Carruthers JM, Green JP, Field J (2010) Unrelated helpers in a primitively eusocial wasp: is helping tailored towards direct fitness? PLoS ONE 5(8):e11997. doi:10.1371/journal.pone.0011997

    Article  PubMed Central  PubMed  Google Scholar 

  • Leadbeater E, Carruthers JM, Green JP, Rosser NS, Field J (2011) Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333:874–876. doi:10.1126/science.1205140

    Article  CAS  PubMed  Google Scholar 

  • Litte M (1977) Behavioral ecology of the social wasp, Mischocyttarus mexicanus. Behav Ecol Sociobiol 2:229–246

    Article  Google Scholar 

  • Lorenzi MC, Bagnères AG, Clément JL (1996) The role of cuticular hydrocarbons in insect societies: is it the same in paper wasps? In: Turillazzi S, West-Eberhard MJ (eds) Natural history and the evolution of paper wasps. Oxford University Press, Oxford, pp 178–189

    Google Scholar 

  • Lorenzi MC, Sledge MF, Laiolo P, Sturlini E, Turillazi S (2004) Cuticular hydrocarbon dynamics in young adult Polistes dominulus (Hymenoptera: Vespidae) and the role of linear hydrocarbons in nestmate recognition systems. J Insect Physiol 50:935–941

    Article  CAS  PubMed  Google Scholar 

  • Mateo JM (2004) Recognition systems and biological organization: the perception component of social recognition. Ann Zool Fen 41:729–745

    Google Scholar 

  • McCulloch CE (2000) Generalized linear models. J Am Stat Assoc 95:1320–1324

    Article  Google Scholar 

  • Molina Y, O'Donnell S (2008) A developmental test of the dominance-nutrition hypothesis: linking adult feeding, aggression and reproductive potential in the paperwasp Mischocyttarus mastigophorus. Ethol Ecol Evol 20:125–139

    Article  Google Scholar 

  • Mora-Kepfer F (2011) Context-dependent behavior, reproduction and brain structure in newly-established colonies of the primitively eusocial wasp, Mischocyttarus mexicanus. Dissertation, University of Miami

  • Nelder JA, Wedderburn RWM (1972) Generalized Linear Models. J Roy Stat Soc A 135:370–384

    Article  Google Scholar 

  • Nonacs P, Reeve HK (1995) The ecology of cooperation in wasps: causes and consequences of alternative reproductive decisions. Ecology 76:953–996

    Article  Google Scholar 

  • O'Donnell S (1998) Dominance and polyethism in the eusocial paper wasp Mischocyttarus mastigophorus (Hymenoptera: Vespidae). Behav Ecol Sociobiol 43:327–331

    Article  Google Scholar 

  • Panek LM, Gamboa G, Espelie KE (2001) The effect of a wasp's age on its cuticular hydrocarbon profile and its tolerance by nestmate and non-nestmate conspecifics (Polistes fuscatus,Hymenoptera: Vespidae). Ethol 107:55–63

    Article  Google Scholar 

  • Penn DJ, Frommen JG (2010) Kin recognition: an overview of conceptual issues, mechanisms and evolutionary theory. In: Kappeler, P (ed) Animal behavior: evolution and mechanisms. Springer, Heidelberg

  • Queller DC, Zacchi F, Cervo R, Turillazi S, Henshaw MT, Santorelli LA, Strassman JE (2000) Unrelated helpers in a social insect. Nature 405:784–787

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Reeve HK (1989) The evolution of conspecific acceptance thresholds. Am Nat 133:407–435

    Article  Google Scholar 

  • Reeve HK (1991) Polistes. In: Ross KG, Mathews RW (eds) The social biology of wasps. Comstock, London, pp 99–148

    Google Scholar 

  • Röseler PF (1991) Reproductive competition during colony establishment. In: Ross KG, Mathews RW (eds) The social biology of wasps. Comstock, London, pp 309–335

    Google Scholar 

  • Sherman PW, Reeve HK, Fenning DW (1997) Recognition systems. In: Krebs JR, Davies NB (eds) Behavioural ecology. An evolutionary approach. Blackwell, Oxford, pp 69–96

    Google Scholar 

  • Singer TL, Espelie KE (1992) Social wasps use nest paper hydrocarbons for nestmate recognition. Anim Behav 44:63–68

    Article  Google Scholar 

  • Sokal R, Rohlf FJ (1995) Biometry. W.H. Freeman, New York, pp 715–724

  • Solomon NG, French JA (1997) Cooperative breeding in mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • Soro A, Ayasse M, Zobel MU, Paxton RJ (2009) Complex sociogenetic organization and the origin of unrelated workers in a eusocial sweat bee, Lasioglossum malachurum. Insect Soc 56:55–63

    Article  Google Scholar 

  • SPSS, Inc (2008) SPSS Graduate Pack for Windows. SPSS, Chicago

    Google Scholar 

  • Starks PT (1998) A novel ‘Sit and wait’ reproductive strategy in social wasps. Proc R Soc Lond B 265:1407–1410

    Article  Google Scholar 

  • Starks PT, Fischer DJ, Watson RE, Melikian GL, Nath SD (1998) Context-dependent nestmate discrimination in the paper wasp, Polistes dominulus: a critical test of the optimal acceptance threshold model. Anim Beh 56:449–458

    Article  Google Scholar 

  • Stuart RJ, Herbers JM (2000) Nest mate recognition in ants with complex colonies: within- and between-population variation. Behav Ecol 11:676–685

    Article  Google Scholar 

  • Sumner S, Lucas E, Barker J, Isaac NJB (2007) Radio-tagging technology reveals extreme nest drifting in a eusocial insect. Curr Bio 17:140–145

    Article  CAS  Google Scholar 

  • Trivers RL, Hare H (1976) Haplodiploidy and the evolution of social insects. Science 191:249–263

    Article  CAS  PubMed  Google Scholar 

  • Waldman B (1987) Mechanisms of kin recognition. J Theor Biol 128:159–185

    Article  Google Scholar 

  • Van Wilgenburg E, Clémencet J, Tsutsui ND (2010) Experience influences aggressive behavior in the Argentine ant. Biol Lett 6:152–155

    Article  PubMed Central  PubMed  Google Scholar 

  • Vander Meer RK, Saliwanchik D, Lavine (1989) Temporal changes in cuticular hydrocarbon patterns of Solenopsis invicta: implications for nestmate recognition. J Chem Ecol 15:2115–2125

    Article  CAS  PubMed  Google Scholar 

  • Vásquez G, Silverman J (2010) Queen acceptance and the complexity of nestmate discrimination in the Argentine ant. Behav Ecol Sociobiol 62:537–548

    Article  Google Scholar 

  • West MJ (1967) Foundress associations in Polistinae wasps: dominance hierarchies and the evolution of social behavior. Science 157:1584–1585

    Article  CAS  PubMed  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007) Evolutionary explanations for cooperation. Curr Bio 17:R661–R672. doi:10.1016/j.cub.2007.06.004

    Article  CAS  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, 650 pp

  • Zanette LR, Field J (2008) Genetic relatedness in early association of Polistes dominulus: from related to unrelated helpers. Mol Ecol 17:2590–2597

    Article  CAS  PubMed  Google Scholar 

  • Zanette LR, Field J (2011) Founders versus joiners: group formation in the paper wasp Polistes dominulus. Anim Beh 82:699–705

    Article  Google Scholar 

Download references

Acknowledgments

I thank N. Tucci, C. Muniz, A. Murfin, Z. Buckley, F. Brand, and C. Beers for assistance in field experiments and the staff of Kendall Indian Hammocks Park for logistic support. O. Gaoue provided advice for GLM analysis. K. Waddington, W. Searcy, S. O'Donnell, A. Dubois, A. Uy, and members of the Uy and Searcy labs gave helpful comments to improve earlier versions of the manuscript. This study was funded by a Sigma Xi Grant in-Aid of Research, a GAFAC Funding Award, and the William H. Evoy Research Support Fund and complied with the regulations of the Miami-Dade County Parks & Recreation Department, with special thanks to Alicie Warren and Eduardo Salzedo for permit logistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floria Mora-Kepfer.

Additional information

Communicated by R. F. A. Moritz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora-Kepfer, F. Context-dependent acceptance of non-nestmates in a primitively eusocial insect. Behav Ecol Sociobiol 68, 363–371 (2014). https://doi.org/10.1007/s00265-013-1650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1650-2

Keywords

Navigation