Skip to main content
Log in

Consequences of resource competition for sex allocation and discriminative behaviors in a hyperparasitoid wasp

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Population-wide mating patterns can select for equal parental investment in both sexes, but limiting resources, such as mates or developmental substrates, can increase competition leading to biased sex ratios in favor of either sex. Such competition for resources typically occurs in spatially structured populations, where dispersal is limited. In this laboratory study, we investigate if and how resource competition affects sex allocation, discriminative behaviors and competitive interactions of the wingless hyperparasitoid Gelis acororum, which exploits patchily distributed hosts. We show that G. acororum sex ratios are male-biased and that this is not a consequence of constrained reproduction by virgin females. Our results suggest that this pattern of reproductive investment, which is only rarely observed in parasitoids, is a consequence of resource limitation, in terms of hosts rather than mates. Further, G. acororum appears not to respond to intrinsic host quality or to prior oviposition in its host. When competing inter-specifically for host resources, G. acororum outcompetes its congener Gelis agilis, but does so mainly when ovipositing on the host first. Overall, our results suggest that host resource limitation could be an important environmental factor shaping sex allocation in G. acororum, with competition taking place both intra- and inter-specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc Roy Soc B 277:503–511

    Article  Google Scholar 

  • Bressac C, Chevrier C (1998) Offspring and sex ratio are independent of sperm management in Eupelmus orientalis females. J Insect Physiol 44:351–359

    Article  CAS  PubMed  Google Scholar 

  • Charnov EL, Los-den Hartogh RL, Jones WT, van den Assem J (1981) Sex ratio evolution in a variable environment. Nature 289:27–33

    Article  CAS  PubMed  Google Scholar 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark AB (1978) Sex ratio and local resource competition in a prosimian primate. Science 201:163–165

    Article  CAS  PubMed  Google Scholar 

  • Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435

    Article  Google Scholar 

  • Crawley MJ (1993) GLIM for Ecologists. Blackwell

  • Debout G, Fauvergue X, Fleury F (2002) The effect of foundress number on sex ratio under partial local mate competition. Ecol Entomol 27:242–246

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. Available from: http://www.R-project.org/

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press

  • Foitzik S, Kureck IM, Rüger MH, Metzler D (2010) Alternative reproductive tactics and the impact of local competition on sex ratios in the ant Hypoponera opacior. Behav Ecol Sociobiol 64:1641–1654

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press

  • Godfray HCJ, Cook JM (1997) Mating systems of parasitoid wasps. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, pp 211–225

  • Grant B, Burton S, Contoreggi C, Rothstein M (1980) Outbreeding via frequency-dependent mate selection in the parasitoid wasp, Nasonia (=Mormoniella) vitripennis Walker. Evolution 34:983–992

    Article  Google Scholar 

  • Guillon JM, Bottein J (2011) A spatially explicit model of sex ratio evolution in response to sex-biased dispersal. Theor Pop Biol 80:141–149

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  CAS  PubMed  Google Scholar 

  • Hardy ICW (1992) Nonbionomial sex allocation and brood sex-ratio variances in the parasitoid Hymenoptera. Oikos 65:143–158

    Article  Google Scholar 

  • Hardy ICW, van Alphen JJM, Heimpel GE, Ode PJ (1995) Entomophagous insects—progress in evolutionary and applied ecology. Trends Ecol Evol 10:96–97

    Article  CAS  PubMed  Google Scholar 

  • Hardy ICW, Dijkstra LJ, Gillis JEM, Luft PA (1998) Patterns of sex ratio, virginity and developmental mortality in gregarious parasitoids. Biol J Linn Soc 64:239–270

    Article  Google Scholar 

  • Harvey JA (2000) Dynamic effects of parasitism by an endoparasitoid wasp on the development of two host species: implications for host quality and parasitoid fitness. Ecol Entomol 25:267–278

    Article  Google Scholar 

  • Harvey JA (2007) Comparing and contrasting development and reproductive strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae). Evol Ecol 22:153–166

    Article  Google Scholar 

  • Harvey JA, Pashalidou F, Soler R, Bezemer TM (2011) Intrinsic competition between two secondary hyperaparasitoids results in temporal trophic switch. Oikos 120:226–233

    Article  Google Scholar 

  • Harvey JA, Poelman EH, Tanaka T (2013) Intrinsic inter- and intra-specific competition in parasitoid wasps. Ann Rev Entomol 58:333–351

    Article  CAS  Google Scholar 

  • Heimpel GE, Lundgren JG (2000) Sex ratios of commercially reared biological control agents. Biol Control 19:77–93

    Article  Google Scholar 

  • Herre EA (1985) Sex ratio adjustment in fig wasps. Science 228:896–898

    Article  CAS  PubMed  Google Scholar 

  • Innocent TM, Abe J, West SA, Reece SE (2010) Competition between relatives and the evolution of dispersal in a parasitoid wasp. J Evol Biol 23:1374–1385

    Article  CAS  PubMed  Google Scholar 

  • Kapranas A, Hardy ICW, Morse JG, Luck RF (2011) Parasitoid developmental mortality in the field: patterns, causes and consequences for sex ratio and virginity. J Anim Ecol 80:192–203

    Article  PubMed  Google Scholar 

  • King BH (1993) Sex ratio manipulation by parasitoid wasps. In: Wrench D, Ebbert M (eds) Evolution and diversity of sex ratio in insects and mites. Chapman & Hall, New York, pp 418–441

    Chapter  Google Scholar 

  • King BH, Kuban KA (2012) Should he stay or should he go: male influence on offspring sex ratio via postcopulatory attendance. Behav Ecol Sociobiol 66:1165–1173

    Article  Google Scholar 

  • King PE, Rafai J (1970) Host discrimination in a gregarious parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J Exp Biol 53:245–254

    Google Scholar 

  • Krackow S, Meelis E, Hardy ICW (2002) Analysis of sex ratio variances and sequences of sex allocation. In: Hardy ICW (ed) Sex Ratios: Concepts and Research Methods. Cambridge University Press, pp 112–131

  • Kraft TS, van Nouhuys S (2013) The effect of multi-species host density on superparasitism and sex ratio in a gregarious parasitoid. Ecol Entomol 38:138–146

    Article  Google Scholar 

  • Lenteren JC, Bakker K, van Alphen JJM (1978) How to analyse host discrimination. Ecol Entomol 3:71–75

    Article  Google Scholar 

  • Lihoreau M, Zimmer C, Rivault C (2007) Kin recognition and incest avoidance in a group-living insect. Behav Ecol 18:880–887

    Article  Google Scholar 

  • Macke E, Magalhães S, Bach F, Olivieri I (2011) Experimental evolution of reduced sex ratio adjustment under local mate competition. Science 334:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Mery F, Kawecki TJ (2002) Experimental evolution of learning ability in fruit flies. Proc Natl Acad Sci U S A 99:14274–14279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mery F, Kawecki TJ (2004) An operating cost of learning in Drosophila melanogaster. Anim Behav 68:589–598

    Article  Google Scholar 

  • Nagelkerke CJ, Hardy ICW (1994) The influence of developmental mortality on optimal sex allocation under local mate competition. Behav Ecol 5:401–411

    Article  Google Scholar 

  • Nagelkerke CJ, Sabelis MW (1991) Precise sex ratio control in the pseudo-arrhenotokous phytoseiid mite Typhlodromus occidentalis Nesbitt. In: Schuster R, Marphy PW (eds) The Acari: Reproduction, development and life-history strategies. Chapman & Hall, pp 193–207

  • Nelson RM, Greeff JM (2011) Sex ratio dependent dispersal when sex ratios vary between patches. J Theor Biol 290:81–87

    Article  PubMed  Google Scholar 

  • Nufio CR, Papaj DR (2001) Host marking behavior in phytophagous insects and parasitoids. Entomol Exp Appl 99:273–293

    Article  Google Scholar 

  • Ode PJ, Heinz KM (2002) Host-size-dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biol Control 24:31–41

    Article  Google Scholar 

  • Ode PJ, Antolin MF, Strand MR (1995) Brood-mate avoidance in the parasitic wasp Bracon hebetor Say. Anim Behav 49:1239–1248

    Article  Google Scholar 

  • Ode PJ, Antolin MF, Strand MR (1997) Constrained oviposition and female-biased sex allocation in a parasitic wasp. Oecologia 109:547–555

    Article  Google Scholar 

  • Oku S, Nishida T (2001) Presence of single-sex broods under local mate competition in Trypoxylon malaisei (Hymenoptera: Sphecidae): adaptation or maladaptation? Ann Entomol Soc Am 94:550–554

    Article  Google Scholar 

  • Price PW (1972) Parasitoids utilizing the same host: adaptive nature of differences in size and form. Ecology 53:77–78

    Article  Google Scholar 

  • Raychoudhury R, Desjardins CA, Buellesbach J, Loehlin DW, Grillenberger BK, Beukeboom L, Schmitt T, Werren JH (2010) Behavioral and genetic characteristics of a new species of Nasonia. Heredity 104:278–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sait SM, Begon M, Thompson DJ, Harvey JA (1996) Parasitism of baculovirus-infected Plodia interpunctella by Venturia canescens and subsequent virus transmission. Funct Ecol 10:586–591

    Article  Google Scholar 

  • Silk JB (1983) Local resource competition and facultative adjustment of sex ratios in relation to competitive abilities. Am Nat 121:56–66

    Article  Google Scholar 

  • Silk JB (1984) Local resource competition and the evolution of male-biased sex ratios. J Theor Biol 108:203–213

    Article  CAS  PubMed  Google Scholar 

  • Silk JB, Brown GR (2008) Local resource competition and local resource enhancement shape primate birth sex ratios. Proc Roy Soc B 275:1761–1765

    Article  Google Scholar 

  • Somjee U, Ablard K, Crespi B, Schaefer PW, Gries G (2010) Local mate competition in the solitary parasitoid wasp Ooencyrtus kuvanae. Behav Ecol Sociobiol 65:1071–1077

    Article  Google Scholar 

  • Strohm E, Linsenmair KE (1997) Low resource availability causes extremely male-biased investment ratios in the European beewolf, Philanthus triangulum F. (Hymenoptera, Sphecidae). Proc Roy Soc B 264:423–429

    Article  Google Scholar 

  • Tanaka T, Yagi S, Nakamatsu Y (1992) Regulation of parasitoid sex allocation and host growth by Cotesia (Apanteles) kariyai (Hymenoptera, Braconidae). Ann Entomol Soc Am 85:310–316

    Google Scholar 

  • Ueno T (1997) Host age preference and sex allocation in the pupal parasitoid Itoplectis naranyae (Hymenoptera: Ichneumonidae). Ann Entomol Soc Am 90:640–645

    Google Scholar 

  • van Alphen JJM, Visser ME (1990) Superparasitism as an adaptive strategy for insect parasitoids. Ann Rev Entomol 35:59–79

    Article  Google Scholar 

  • van Baaren J, Le Lann C, Pinchenot J, Pierre JS, Krespi L, Outreman Y (2009) How could host discrimination abilities influence the structure of a parasitoid community? Bull Entomol Res 99:299–306

    Article  PubMed  Google Scholar 

  • Vinson SB (1976) Host selection by insect parasitoids. Ann Rev Entomol 21:109–133

    Article  Google Scholar 

  • Vinson SB, Bin F, Vet LEM (1998) Critical issues in host selection by insect parasitoids. Biol Control 11:77–78

    Article  Google Scholar 

  • Werren JH (1983) Sex ratio evolution under local mate competition in a parasitic wasp. Evolution 37:116–124

    Article  Google Scholar 

  • West SA (2009) Sex allocation. Princeton University Press

  • West SA, Flanagan KE, Godfray HCJ (1999) Sex allocation and clutch size in parasitoid wasps that produce single-sex broods. Anim Behav 57:265–275

    Article  PubMed  Google Scholar 

  • West SA, Flanagan KE, Godfray HCJ (2001) Variable host quality, life-history invariants, and the reproductive strategy of a parasitoid wasp that produces single sex clutches. Behav Ecol 12:577–583

    Article  Google Scholar 

  • West SA, Pen I, Griffin AS (2002) Cooperation and competition between relatives. Science 296:72–75

    Article  CAS  PubMed  Google Scholar 

  • Wilson K, Hardy ICW (2002) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (ed) Sex Ratios: Concepts and Research Methods. Cambridge University Press, pp 48–92

Download references

Acknowledgments

We are grateful to Flavia Araujo Barbosa and two anonymous referees for providing helpful comments on our manuscript and we would like to thank Roel Wagenaar for his rearing of the hosts and parasitoids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertanne Visser.

Additional information

Communicated by L. Sundström

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, B., Le Lann, C., Snaas, H. et al. Consequences of resource competition for sex allocation and discriminative behaviors in a hyperparasitoid wasp. Behav Ecol Sociobiol 68, 105–113 (2014). https://doi.org/10.1007/s00265-013-1627-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1627-1

Keywords

Navigation