Skip to main content
Log in

Predicting leadership using nutrient requirements and dominance rank of group members

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Group members must decide collectively when and where to go despite their different nutrient requirements. One mechanism underlying consensus decisions is the proposition by one individual to move. The individual frequently initiating movements is often named a “leader”, and this individual may be the most dominant, the oldest or may have the greatest physiological needs. However, high-ranking individuals are often those with the highest body mass, and thus the highest nutrient requirements. In this study, we use a state-dependent model to assess the importance of dominance and nutrient requirements to the initiation of group movements, testing different combinations of effects of these interacting factors. We first show using a theoretical approach that whatever the correlation between the dominance hierarchy and body mass, all decision-making systems are viable (or stable). However, in most cases, one individual does become the leader, and nutrient requirements appear to be more important for determining which individual will emerge as the leader than pre-existing individual characteristics such as their dominance rank. We obtained the same result when we compared the simulated distributions of initiations to the observed distributions in three macaque species. Results of our comparison of three macaque groups suggest that we can predict which group member will be the leader simply by knowing its body mass and its reproductive state. Understanding the link between dominance, needs and leadership may be a key to understanding consensus decisions and collective motion in animal groups, and might provide insight into the management of animal groups and their conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DM (2007) Virtual fencing—past, present and future. Rangeland J 29:65–78

    Article  Google Scholar 

  • Barelli C, Boesch C, Heistermann M, Reichard UH (2008) Female white-handed gibbons (Hylobates lar) lead group movements and have priority of access to food resources. Behaviour 145:965–981

    Article  Google Scholar 

  • Bergvall UA, Schapers A, Kjellander P, Weiss A (2011) Personality and foraging decisions in fallow deer, Dama dama. Anim Behav 81:101–112

    Article  Google Scholar 

  • Boinski S, Garber PA (2000) On the move: how and why animals travel in groups. University of Chicago Press, Chicago

    Google Scholar 

  • Bousquet CAH, Sumpter DJT, Manser MB (2011) Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proc R Soc Lond B 278:1482–1488

    Article  Google Scholar 

  • Bryson JJ, Ando Y, Lehmann H (2007) Agent-based modelling as scientific method: a case study analysing primate social behaviour. Philos T R Soc B 362:1685–1699

    Article  Google Scholar 

  • Butler Z (2006) From robots to animals: virtual fences for controlling cattle. Inter J Robot Res 25:485–508

    Article  Google Scholar 

  • Chapman CA, Chapman LJ (2000) Interdemic variation in mixed-species association patterns: common diurnal primates of kibale national park, Uganda. Behav Ecol Sociobiol 47:129–139

    Article  Google Scholar 

  • Conradt L, Roper TJ (2003) Group decision-making in animals. Nature 421:155–158

    Article  PubMed  CAS  Google Scholar 

  • Conradt L, Roper TJ (2005) Consensus decision making in animals. Trends Ecol Evol 20:449–456

    Article  PubMed  Google Scholar 

  • Conradt L, Roper TJ (2007) Democracy in animals: the evolution of shared group decisions. Proc R Soc Lond B 274:2317–2326

    Article  CAS  Google Scholar 

  • Conradt L, Roper TJ (2009) Conflicts of interest and the evolution of decision sharing. Philos T R Soc B 364:807–819

    Article  Google Scholar 

  • Conradt L, Krause J, Couzin ID, Roper TJ (2009) “Leading according to need” in self-organizing groups. Am Nat 173:304–312

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Shannon G, Slotow R, Page B, Duffy KJ (2007) Short-duration daytime movements of a cow herd of African elephants. J Mammal 88:151–157

    Article  Google Scholar 

  • de Waal FBM (1986) The integration of dominance and social bonding in primates. Quart Rev Biol 61:459–479

    Article  PubMed  Google Scholar 

  • di Bitetti MS, Janson CH (2001) Social foraging and the finder’s share in capuchin monkeys, Cebus apella. Anim Behav 62:47–56

    Article  Google Scholar 

  • Dunbar RIM (2010) Structure of gelada baboon reproductive units. Z Tierpsychol 63:265–282

    Article  Google Scholar 

  • Erhart E, Overdorff D (1999) Female coordination of group travel in wild Propithecus and Eulemur. Int J Primatol 20:927–940

    Article  Google Scholar 

  • Feist J, Mccullough D (1976) Behavior patterns and communication in feral horses. Z Tierpsychol 41:337–371

    Article  PubMed  CAS  Google Scholar 

  • Fischhoff IR, Sundaresan SR, Cordingley J, Larkin HM, Sellier M-J, Rubenstein DI (2007) Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Anim Behav 73:825–831

    Article  Google Scholar 

  • Garber PA (1989) Role of spatial memory in primate foraging patterns: Saguinus mystax and Saguinus fuscicollis. Am J Primatol 19:203–216

    Article  Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V et al (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126

    Article  Google Scholar 

  • Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J et al (2010) The ODD protocol: a review and first update. Ecol Model 221:2760–2768

    Article  Google Scholar 

  • Holekamp K, Boydston E, Smale L (2000) Group travel in social carnivores. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 587–627

    Google Scholar 

  • Hooper PL, Kaplan HS, Boone JL (2010) A theory of leadership in human cooperative groups. J Theor Biol 265:633–646

    Article  PubMed  Google Scholar 

  • Isbell LA, Pruetz JD, Nzuma BM, Young TP (1999) Comparing measures of travel distances in primates: methodological considerations and socioecological implications. Am J Primatol 48:87–98

    Article  PubMed  CAS  Google Scholar 

  • Jacobs A, Watanabe K, Petit O (2011) Social structure affects initiations of group movements but not recruitment success in Japanese macaques (Macaca fuscata). Int J Primatol 32:1311–1324

    Article  Google Scholar 

  • Kindleberger CP (1981) Dominance and leadership in the international economy: exploitation, public goods, and free rides. Int Stud Quart 25:242–254

    Article  Google Scholar 

  • King AJ (2010) Follow me! I’m a leader if you do; I’m a failed initiator if you don’t? Behav Process 84:671–674

    Article  Google Scholar 

  • King AJ, Sueur C (2011) Where next? Group coordination and collective decision making by primates. Int J Primatol 32:1245–1267

    Article  Google Scholar 

  • King A, Douglas C, Huchard E, Isaac N, Cowlishaw G (2008) Dominance and affiliation mediate despotism in a social primate. Curr Biol 18:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Johnson DDP, Van Vugt M (2009) The origins and evolution of leadership. Curr Biol 19:R911–R916

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Sueur C, Cowlishaw G (2011) A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Anim Behav 82:1337–1345. doi:10.1016/j.anbehav.2011.09.017

    Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Reeves P, Hoare D (1998) Positioning behaviour in roach shoals: the role of body length and nutritional state. Behaviour 135:1031–1039

    Article  Google Scholar 

  • Kummer H (1968) Social organization of hamadryas baboons. Chicago University Press, Chicago, A field study

    Google Scholar 

  • Kurvers RHJM, Adamczyk VMAP, van Wieren SE, Prins HHT (2010) The effect of boldness on decision-making in barnacle geese is group-size-dependent. Proc R Soc Lond B 278:2018–2024

    Article  Google Scholar 

  • Leblond C, Reebs SG (2006) Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas). Behaviour 143:1263–1280

    Article  Google Scholar 

  • Leca J-B, Gunst N, Thierry B, Petit O (2003) Distributed leadership in semifree-ranging white-faced capuchin monkeys. Anim Behav 66:1045–1052

    Article  Google Scholar 

  • Lusseau D, Conradt L (2009) The emergence of unshared consensus decisions in bottlenose dolphins. Behav Ecol Sociobiol 63:1067–1077

    Article  Google Scholar 

  • McComb K, Moss C, Durant SM, Baker L, Sayialel S (2001) Matriarchs as repositories of social knowledge in African elephants. Science 292:491–494

    Article  PubMed  CAS  Google Scholar 

  • McComb K, Shannon G, Durant SM, Sayialel K, Slotow R, Poole J, Moss C (2011) Leadership in elephants: the adaptive value of age. Proc R Soc Lond B 278:3270–3276

    Article  Google Scholar 

  • Mech LD, Boitani L (2003) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Nakagawa N (1989) Bioenergetics of Japanese monkeys (Macaca fuscata) on Kinkazan Island during winter. Primates 30:441–460

    Article  Google Scholar 

  • Nakagawa N (2009) Feeding rate as valuable information in primate feeding ecology. Primates 50:131–141

    Article  PubMed  Google Scholar 

  • National Research Council (USA), Committee on Animal Nutrition (2003) Nutrient requirements of nonhuman primates. National Academies Press, Washington D.C

    Google Scholar 

  • Noser R, Byrne RW (2007) Travel routes and planning of visits to out-of-sight resources in wild chacma baboons, Papio ursinus. Anim Behav 73:257–266

    Article  Google Scholar 

  • Peterson RO, Jacobs AK, Drummer TD, Mech LD, Smith DW (2002) Leadership behavior in relation to dominance and reproductive status in gray wolves, Canis lupus. Can J Zool 80:1405–1412

    Article  Google Scholar 

  • Petit O, Bon R (2010) Decision-making processes: the case of collective movements. Behav Process 84:635–647

    Article  Google Scholar 

  • Pratt SC, Mallon EB, Sumpter DJT, Franks NR (2002) Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol Sociobiol 52:117–127

    Article  Google Scholar 

  • Prins HHT (1996) Ecology and behaviour of the African buffalo: social inequality and decision making. Springer, Heidelberg

    Book  Google Scholar 

  • Pyritz LW, King AJ, Sueur C, Fichtel C (2011) Reaching a consensus: terminology and concepts used in coordination and decision-making research. Int J Primatol 32:1268–1278

    Article  PubMed  Google Scholar 

  • Rands SA (2011) The effects of dominance on leadership and energetic gain: a dynamic game between pairs of social foragers. PLoS Comput Biol 7:e1002252

    Article  PubMed  CAS  Google Scholar 

  • Rands SA, Cowlishaw G, Pettifor RA, Rowcliffe JM, Johnstone RA (2003) Spontaneous emergence of leaders and followers in foraging pairs. Nature 423:432–434

    Article  PubMed  CAS  Google Scholar 

  • Rands SA, Pettifor RA, Rowcliffe JM, Cowlishaw G (2004) State-dependent foraging rules for social animals in selfish herds. P Proc R Soc Lond B 271:2613–2620

    Article  Google Scholar 

  • Rands S, Cowlishaw G, Pettifor R, Rowcliffe JM, Johnstone R (2008) The emergence of leaders and followers in foraging pairs when the qualities of individuals differ. BMC Evol Biol 8:51

    Article  PubMed  Google Scholar 

  • Rasa O (1983) Dwarf mongoose and hornbill mutualism in the Taru desert, Kenya. Behav Ecol Sociobiol 12:181–190

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16

    Article  Google Scholar 

  • Reebs SG (2001) Influence of body size on leadership in shoals of golden shiners, Notemigonus crysoleucas. Behaviour 138:797–809

    Article  Google Scholar 

  • Reinhardt V (1992) Voluntary progression order in captive rhesus macaques. Zoo Biol 11:61–66

    Article  Google Scholar 

  • Romey WL, Galbraith E (2008) Optimal group positioning after a predator attack: the influence of speed, sex, and satiation within mobile whirligig swarms. Behav Ecol 19:338–343

    Article  Google Scholar 

  • Sarin S, McDermott C (2003) The effect of team leader characteristics on learning, knowledge application, and performance of cross-functional new product development teams. Decision Sci 34:707–739

    Article  Google Scholar 

  • Seeley TD, Visscher PK (2004) Quorum sensing during nest-site selection by honeybee swarms. Behav Ecol Sociobiol 56:594–601

    Article  Google Scholar 

  • Sellers W, Hill R, Logan B (2007) An agent-based model of group decision making in baboons. Phil Trans R Soc B-Biol Sci 362:1699–1710

    Article  CAS  Google Scholar 

  • Silk JB, Alberts SC, Altmann J (2003) Social bonds of female baboons enhance infant survival. Science 302:1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Simpson SJ, Sibly RM, Lee KP, Behmer ST, Raubenheimer D (2004) Optimal foraging when regulating intake of multiple nutrients. Anim Behav 68:1299–1311

    Article  Google Scholar 

  • Stewart KJ, Harcourt AH (1994) Gorillas’ vocalizations during rest periods: signals of impending departure? Behaviour 130:29–40

    Article  Google Scholar 

  • Stueckle S, Zinner D (2008) To follow or not to follow: decision making and leadership during the morning departure in chacma baboons. Anim Behav 75:1995–2004

    Article  Google Scholar 

  • Sueur C (2010) Influence des relations sociales sur les prises de décisions (Influence of social relationships on decision-making). Editions universitaires européennes, Saarbrucken. ISBN-13:978–6131524837

  • Sueur C (2011) Group decision-making in chacma baboons: leadership, order and communication during movement. BMC Ecol 11:26

    Article  PubMed  Google Scholar 

  • Sueur C (2012) Viability of decision-making systems in human and animal groups. J Theor Biol 306:93–103

    Article  PubMed  Google Scholar 

  • Sueur C, Petit O (2008a) Shared or unshared consensus decision in macaques? Behav Process 78:84–92

    Article  CAS  Google Scholar 

  • Sueur C, Petit O (2008b) Organization of group members at departure is driven by social structure in Macaca. Int J Primatol 29:1085–1098

    Article  Google Scholar 

  • Sueur C, Petit O (2010) Signals use by leaders in Macaca tonkeana and Macaca mulatta: group-mate recruitment and behaviour monitoring. Anim Cogn 13:239–248

    Article  PubMed  Google Scholar 

  • Sueur C, Petit O, Deneubourg J (2009) Selective mimetism at departure in collective movements of Macaca tonkeana: an experimental and theoretical approach. Anim Behav 78:1087–1095

    Article  Google Scholar 

  • Sueur C, Deneubourg J-L, Petit O (2010a) Sequence of quorums during collective decision making in macaques. Behav Ecol Sociobiol 64:1875–1885

    Article  Google Scholar 

  • Sueur C, Deneubourg J-L, Petit O, Couzin ID (2010b) Differences in nutrient requirements imply a non-linear emergence of leaders in animal groups. PLoS Comput Biol 6:e1000917

    Article  PubMed  Google Scholar 

  • Sueur C, Petit O, De Marco A, Jacobs AT, Watanabe K, Thierry B (2011) A comparative network analysis of social style in macaques. Anim Behav 82:845–852

    Article  Google Scholar 

  • Sueur C, King AJ, Pelé M, Petit O. (2012) Fast and accurate decisions as a result of scale-free network properties in two primate species. Proceedings of the Complex System Society (in press)

  • Thierry B, Singh M, Kaumanns W (2004) Macaque societies: a model for the study of social organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Trillmich J, Fichtel C, Kappeler PM (2004) Coordination of group movements in wild verreaux’s sifakas (Propithecus verreauxi). Behaviour 141:1103–1120

    Article  Google Scholar 

  • Van Vugt M, De Cremer D (1999) Leadership in social dilemmas: the effects of group identification on collective actions to provide public goods. J Pers Soc Psychol 76:587–599

    Article  Google Scholar 

  • Van Vugt M, Hogan R, Kaiser RB (2008) Leadership, followership, and evolution: Some lessons from the past. Am Psychol 63:182–196

    Article  PubMed  Google Scholar 

  • Watanabe K, Brotoisworo E (1982) Field observation of Sulawesi macaques. Kyoto Univ Overseas Res Rep Stud Asian Non-Human Primates 2:3–9

    Google Scholar 

  • Watts DP (2000) Mountain gorilla habitat use strategies and group movements. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 351–374

    Google Scholar 

  • Yamagiwa J, Hill DA (1998) Intraspecific variation in the social organization of Japanese macaques: past and present scope of field studies in natural habitats. Primates 39:257–273

    Article  Google Scholar 

Download references

Acknowledgments

C.S. thanks Iain D. Couzin and J.L. Deneubourg for their helpful discussions on the model. We also thank Bernard Thierry, Pierre Uhlrich and Pau Molina for their help in obtaining information about the body masses of individual Tonkean and rhesus macaques. We thank two anonymous reviewers for their helpful comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Sueur.

Additional information

Communicated by E. Huchard

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sueur, C., MacIntosh, A.J.J., Jacobs, A.T. et al. Predicting leadership using nutrient requirements and dominance rank of group members. Behav Ecol Sociobiol 67, 457–470 (2013). https://doi.org/10.1007/s00265-012-1466-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1466-5

Keywords

Navigation