Skip to main content

Advertisement

Log in

Personality trait differences between mainland and island populations in the common frog (Rana temporaria)

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Understanding and predicting species range expansions is an important challenge in modern ecology because of rapidly changing environments. Recent studies have revealed that consistent within-species variation in behavior (i.e., animal personality) can be imperative for dispersal success, a key process in range expansion. Here we investigate how habitat isolation can mediate differentiation of personality traits between recently founded island populations and the main population. We performed laboratory studies of boldness and exploration across life stages (tadpoles and froglets) using four isolated island populations and four mainland populations of the common frog (Rana temporaria). Both tadpoles and froglets from isolated populations were bolder and more exploratory than conspecifics from the mainland. Although the pattern can be influenced by possible differences in predation pressure, we suggest that this behavioral differentiation might be the result of a disperser-dependent founder effect brought on by an isolation-driven environmental filtering of animal personalities. These findings can have important implications for both species persistence in the face of climate change (i.e., range expansions) and ecological invasions as well as for explaining rapid speciation in isolated patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anholt BR, Werner EE (1998) Predictable changes in predation mortality as a consequence of changes in food availability and predation risk. Evol Ecol 12:729–738

    Article  Google Scholar 

  • Barton NH, Turelli M (1991) Natural and sexual selection on many loci. Genetics 127:229–255

    PubMed  CAS  Google Scholar 

  • Bearhop S, Fiedler W, Furness RW, Votier SC, Waldron S, Newton J, Bowen GJ, Berthold P, Farnsworth K (2005) Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310:502–504

    Article  PubMed  CAS  Google Scholar 

  • Bell AM (2005) Behavioral differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J Evol Biol 18:464–473

    Article  PubMed  CAS  Google Scholar 

  • Bell AM (2006) Future directions in behavioural syndromes research. Proc R Soc Lond B 274:755–761

    Article  Google Scholar 

  • Bell AM, Sih A (2007) Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol Lett 10:828–834

    Article  PubMed  Google Scholar 

  • Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783

    Article  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    Google Scholar 

  • Brodin T (2009) Behavioral syndrome over the boundaries of life-carryovers from larvae to adult damselfly. Behav Ecol 20:30–37

    Article  Google Scholar 

  • Brodin T, Johansson F (2004) Conflicting selection pressures on the growth/predation risk trade-off in a damselfly. Ecology 85:2927–2932

    Article  Google Scholar 

  • Brown C, Jones F, Braithwaite VA (2005) In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi. Anim Behav 70:1003–1009

    Article  Google Scholar 

  • Brown C, Burgess F, Braithwaite VA (2007) Heritable and experiential effects on boldness in a tropical poeciliid. Behav Ecol Sociobiol 62:237–243

    Article  Google Scholar 

  • Chapman BB, Hulthén K, Blomqvist DR, Hansson L-A, Nilsson J-Å, Brodersen J, Nilsson PA, Skov C, Brönmark C (2011) To boldly go: individual differences in boldness influence migratory tendency in a cyprinid fish. Ecol Lett 14:871–876

    Google Scholar 

  • Cote J, Clobert J (2007) Social personalities influence natal dispersal in a lizard. Proc R Soc Lond B 274:383–390

    Article  CAS  Google Scholar 

  • Cote J, Clobert J, Brodin T, Fogarty S, Sih A (2010a) Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philos Trans R Soc Lond B 365:4065–4076

    Article  CAS  Google Scholar 

  • Cote J, Fogarty S, Weinersmith K, Brodin T, Sih A (2010b) Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc R Soc Lond B 277:1571–1579

    Article  Google Scholar 

  • Cote J, Fogarty S, Brodin T, Weinersmith K, Sih A (2011) Personality-dependent dispersal in the invasive mosquitofish: group composition matters. Proc R Soc Lond B 278:1670–1678

    Article  Google Scholar 

  • Dall SRX, Houston AI, McNamara JM (2004) The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol Lett 7:734–739

    Article  Google Scholar 

  • Dingemanse NJ, Wolf M (2010) Evolutionary and ecological approaches to the study of personality. Philos Trans R Soc Lond B 365:3937–3946

    Article  Google Scholar 

  • Dingemanse NJ, Both C, van Noordwijk AJ, Rutten AL, Drent PJ (2003) Natal dispersal and personalities in great tits (Parus major). Proc R Soc Lond B 270:741–747

    Article  Google Scholar 

  • Dingemanse NJ, Wright J, Kazem AJN, Thomas DK, Hickling R, Dawnay N (2007) Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J Anim Ecol 76:1128–1138

    Article  PubMed  Google Scholar 

  • Duckworth RA, Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci U S A 104:15017–15022

    Article  PubMed  CAS  Google Scholar 

  • Dugatkin LA (1992) Tendency to inspect predators predicts mortality risk in the guppy. Behav Ecol 3:124–127

    Article  Google Scholar 

  • Elmberg J (1991) Factors affecting male yearly mating success in the common frog, Rana temporaria. Behav Ecol Sociobiol 28:125–131

    Article  Google Scholar 

  • Fraser DF, Gilliam JF, Daley MJ, Le AN, Skalski GT (2001) Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. Am Nat 158:124–135

    Article  PubMed  CAS  Google Scholar 

  • Gasc J et al (1997) Atlas of amphibians and reptiles in Europe. Museum National d’Histoire Naturelle and Service du Petrimone Naturel, Paris

    Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Hill MF, Caswell H (1999) Habitat fragmentation and extinction thresholds on fractal landscapes. Ecol Lett 2:121–127

    Article  Google Scholar 

  • Johansson F, Hjelm J, Giles BE (2005) Life history and morphology of Rana temporaria in response to pool permanence. Evol Ecol Res 7:1025–1038

    Google Scholar 

  • Johansson F, Lederer B, Lind MI (2010) Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria. PLoS One 5:e11680

    Article  PubMed  Google Scholar 

  • Johansson F, Lind MI, Ingvarsson PK, Bokma F (2012) Evolution of the G-matrix in life history traits in the common frog during a recent colonisation of an island system. Evol Ecol 26:863–878

    Article  Google Scholar 

  • Jones AG, Arnold SJ, Burger R (2003) Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection and genetic drift. Evolution 57:1747–1760

    PubMed  Google Scholar 

  • Ketterson ED, Nolan V Jr (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25

    Article  Google Scholar 

  • Koolhaas JM, Korte SM, de Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MAW, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–935

    Article  PubMed  CAS  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavior decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lind MI, Johansson F (2007) The degree of phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J Evol Biol 20:1288–1297

    Article  PubMed  CAS  Google Scholar 

  • Lind MI, Ingvarsson PK, Johansson H, Hall D, Johansson F (2011) Gene flow and selection on phenotypic plasticity in an island system of Rana temporaria. Evolution 65:684–697

    Article  PubMed  Google Scholar 

  • Luttbeg B, Sih A (2010) Risk, resources and state-dependent adaptive behavioural syndromes. Philos Trans R Soc Lond B 365:3977–3990

    Article  Google Scholar 

  • McCauley S, Brodin T, Hammond J (2010) Foraging rates of larval dragonfly colonists are positively related to habitat isolation: results from a landscape-level experiment. Am Nat 175:E66–E73

    Article  PubMed  Google Scholar 

  • McNamara JM, Houston AI (1994) The effect of a change in foraging options on intake rate and predation rate. Am Nat 144:978–1000

    Article  Google Scholar 

  • Mikolajewski DJ, Johansson F, Brodin T (2004) Condition-dependent behaviour among damselfly populations. Can J Zool 82:653–659

    Article  Google Scholar 

  • Reale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318

    Article  PubMed  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  PubMed  CAS  Google Scholar 

  • Scherlund EJ (2003) Phenotypic plasticity in behavior and life history of the common frog (Rana temporaria L.)—effects of non lethal predator presence and population origin. Master thesis in Ecology, Umeå University

  • Sih A, Bell AM (2008) Insights for behavioral ecology from behavioral syndromes. Adv Stud Behav 38:227–281

    Article  Google Scholar 

  • Sih A, Bell AM, Johnson JC (2004a) Behavioural syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Sih A, Bell AM, Johnson JC, Ziemba RE (2004b) Behavioral syndromes: an integrative overview. Q Rev Biol 79:341–377

    Article  Google Scholar 

  • Sih A, Cote J, Evans M, Fogarty S, Pruitt J (2012) Ecological implications of behavioural syndromes. Ecol Lett 15:278–289

    Article  PubMed  Google Scholar 

  • Smith BR, Blumstein DT (2008) Fitness consequences of personality: a meta-analysis. Behav Ecol 19:448–455

    Article  Google Scholar 

  • Stamps JA, Groothuis TGG (2010) Developmental perspectives on personality: implications for ecological and evolutionary studies of individual differences. Philos Trans R Soc Lond B 365:4029–4041

    Article  Google Scholar 

  • Stuart SN, Hoffman M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE (2008) Threatened amphibians of the world. Lynx Edicions, Barcelona

    Google Scholar 

  • Suarez AV, Tsutsui ND, Holway DA, Case TJ (1999) Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol Invasions 1:43–53

    Article  Google Scholar 

  • Van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. Philos Trans R Soc Lond B 365:3991–4000

    Article  Google Scholar 

  • van Oers K, de Jong G, Drent PJ, van Noordwijk AJ (2005) A genetic analysis of avian personality traits: correlated response to artificial selection. Behav Genet 34:611–619

    Article  Google Scholar 

  • Verbeek MEM, Drent PJ, Wiepkema PR (1994) Consistent individual differences in early exploratory behavior of male great tits. Anim Behav 48:1113–1121

    Google Scholar 

  • Ward A, Thomas P, Hart PJB, Krause J (2004) Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus). Behav Ecol Sociobiol V55:561–568

    Google Scholar 

  • Watkins TB (2001) A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the pacific tree frog, Hyla regilla. Evolution 55:1668–1677

    PubMed  CAS  Google Scholar 

  • Yoshida M, Nagamine M, Uematsu K (2005) Comparison of behavioral responses to a novel environment between three teleosts, bluegill Lepomis macrochirus, crucian carp Carassius langsdorfii, and goldfish Carassius auratus. Fish Sci 71:314–319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Kelly Weinersmith for valuable comments on an earlier version of this manuscript. This research was supported by grants from the Swedish Research Council to TB and FJ.

Ethical standards

All procedures involving handling of frogs were permitted by the ethical committee on animal experiments in Umeå and comply with current Swedish law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Brodin.

Additional information

Communicated by J. Christensen-Dalsgaard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodin, T., Lind, M.I., Wiberg, M.K. et al. Personality trait differences between mainland and island populations in the common frog (Rana temporaria). Behav Ecol Sociobiol 67, 135–143 (2013). https://doi.org/10.1007/s00265-012-1433-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1433-1

Keywords

Navigation