Skip to main content
Log in

Female great tits do not alter their yolk androgen deposition when infested with a low-transmittable ectoparasite

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

In birds as in many other taxa, parasites can have deleterious effects on offspring development. Therefore, avian mothers have evolved responses to counteract parasite virulence in offspring via transgenerational defense mechanisms that is the transfer of immune-enhancing substances such as antibodies to their eggs. Another maternal pathway is suggested by the finding that infested great tit mothers produced eggs with lower androgens, since these yolk androgens are immunosuppressive and potentially affect parasite susceptibility of the nestlings. However, whether this pathway is a specific adaptation to infestation with parasites that affect the offspring or an epiphenomenon of lower androgen production in the female due to the parasite effects on the mother itself is as yet unclear. In this study we infested female great tits (Parus major) with sheep ticks (Ixodes ricinus), which are nonnidicolous ectoparasites with low vertical transmission capability, and evaluated the effects on yolk androgen deposition. Tick-infested females did not significantly reduce their deposition of androgens (androstenedione (A4) and testosterone) compared to tick-reduced females, which is in contrast to a previous study showing a lowered deposition of A4 and testosterone when females were exposed to the nidicolous hen flea. Thus, females alter their hormone deposition, and thus likely offspring phenotype, when exposed to parasites that also form the parasitic environment of their offspring, but not when temporarily infested with the field-dwelling sheep ticks with low transmission capability. This suggests that selection favored the evolution of an adaptive transgenerational effect by acting mainly on the parasite-induced maternal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Apanius V (1998) Ontogeny of immune function. In: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial–precocial spectrum. Oxford University Press, Oxford, pp 203–222

    Google Scholar 

  • Badyaev AV, Schwabl H, Young RL, Duckworth RA, Navara KJ, Parlow AF (2005) Adaptive sex differences in growth of pre-ovulation oocytes in a passerine bird. Proc Biol Sci 272:2165–2172

    Article  PubMed  Google Scholar 

  • Boonekamp JJ, Ros AHF, Verhulst S (2008) Immune activation suppresses plasma testosterone level: a meta-analysis. Biol Lett 4:741–744

    Article  PubMed  Google Scholar 

  • Christe P, Richner H, Oppliger A (1996) Begging, food provisioning, and nestling competition in great tit broods infested with ectoparasites. Behav Ecol 7:127–131

    Article  Google Scholar 

  • Clayton DH, Moore J (1997) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford

    Google Scholar 

  • Clayton DH, Tompkins DM (1994) Ectoparasite virulence is linked to mode of transmission. Proc Biol Sci 256:211–217

    Article  PubMed  CAS  Google Scholar 

  • Clayton DH, Jennifer AH, Koop JAH, Harbison CW, Brett RM, Moyer BR, Bush SE (2010) How birds combat ectoparasites. Open Ornithol J 3:41–71

    Google Scholar 

  • Eising CM, Eikenaar C, Schwbl H, Groothuis TGG (2001) Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proc Biol Sci 268:839–846

    Article  PubMed  CAS  Google Scholar 

  • Fitze PS, Tschirren B, Richner H (2004) Life history and fitness consequences of ectoparasites. J Anim Ecol 73:216–226

    Article  Google Scholar 

  • Gallizzi K, Bischoff LL, Gern L, Richner H (2008) An experimental study on the influence of tick infestations on nestling performance in great tits (Parus major). Auk 125:915–922

    Article  Google Scholar 

  • Gasparini J, McCoy KD, Haussy C, Tveraa T, Boulinier T (2001) Induced maternal response to the Lyme disease spirochaete Borrelia burgdorferi sensu lato in a colonial seabird, the kittiwake Rissa tridactyla. Proc Biol Sci 268:647–650

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Ninni P, Lacroix A, De Lope F, Tirard C, Marzal A, Møller AP (2006) Yolk androgens in the barn swallow (Hirundo rustica): a test of some adaptive hypotheses. J Evol Biol 19:123–131

    Google Scholar 

  • Goerlich VC, Dijkstra C, Schaafsma SM, Groothuis TGG (2009) Testosterone has a long-term effect on primary sex ratio of first eggs in pigeons—in search of a mechanism. Gen Comp Endocrinol 163:184–192

    Article  PubMed  CAS  Google Scholar 

  • Gray JS (1991) The development and seasonal activity of the tick Ixodes ricinus: a vector of lyme borreliosis. Rev Med Vet Entomol 79:323–333

    Google Scholar 

  • Gray JS (1998) The ecology of ticks transmitting lyme borreliosis. Exp Appl Acarol 22:249–258

    Article  Google Scholar 

  • Grégoire A, Faivre B, Heeb P, Cezilly F (2002) A comparison of infestation patterns by Ixodes ticks in urban and rural populations of the Common Blackbird Turdus merula. Ibis 144:640–645

    Article  Google Scholar 

  • Grindstaff JL, Brodie ED, Ketterson ED (2003) Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc Biol Sci 270:2309–2319

    Article  PubMed  Google Scholar 

  • Groothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363:1647–1661

    Article  PubMed  CAS  Google Scholar 

  • Groothuis TGG, Eising CM, Dijkstra C, Müller W (2005a) Balancing between costs and benefits of maternal hormone deposition in avian eggs. Biol Lett 1:78–81

    Article  PubMed  CAS  Google Scholar 

  • Groothuis TGG, Müller W, von Engelhardt N, Carere C, Eising C (2005b) Maternal hormones as a tool to adjust offspring phenotype in avian species. Neurosci Biobehav Rev 29:329–352

    Article  PubMed  CAS  Google Scholar 

  • Heylen DJA, Matthysen E (2008) Effect of tick parasitism on the health status of a passerine bird. Funct Ecol 22:1099–1107

    Article  Google Scholar 

  • Heylen DJA, Matthysen E (2011) Differential virulence in two congeneric ticks infesting songbird nestlings. Parasitology 138:1011–1021

    Article  PubMed  Google Scholar 

  • Heylen D, Adriaensen F, Dauwe T, Eens M, Matthysen E (2009) Offspring quality and tick infestation load in brood rearing great tits Parus major. Oikos 118:1499–1506

    Article  Google Scholar 

  • Heylen DJA, Madder M, Matthysen E (2010) Lack of resistance against the tick Ixodes ricinus in two related passerine bird species. Int J Parasitol 40:183–191

    Article  PubMed  Google Scholar 

  • Jackson JA (1985) On the control of parasites in nest boxes and the use of pesticides near birds. Sialia 7:17–25

    Google Scholar 

  • Kingma SA, Komdeur J, Vedder O, von Engelhardt N, Korsten P, Groothuis TGG (2009) Manipulation of male attractiveness induces rapid changes in avian maternal yolk androgen deposition. Behav Ecol 20:172–179

    Article  Google Scholar 

  • Lehmann T (1993) Ectoparasites: direct impact on host fitness. Parasitol Today 9:8–13

    Article  PubMed  CAS  Google Scholar 

  • Lobato E, Merino S, Moreno J, Morales J, Tomas G, la Puente JMD, Osorno JL, Kuchar A, Mostl E (2008) Corticosterone metabolites in blue tit and pied flycatcher droppings: effects of brood size, ectoparasites and temperature. Horm Behav 53:295–305

    Article  PubMed  CAS  Google Scholar 

  • Marshall DJ, Uller T (2007) When is a maternal effect adaptive? Oikos 116:1957–1963

    Article  Google Scholar 

  • Martinez-de la Puente J, Merino S, Tomas G, Moreno J, Morales J, Lobato E, Martinez J (2011) Nest ectoparasites increase physiological stress in breeding birds: an experiment. Naturwissenschaften 98:99–106

    Article  PubMed  CAS  Google Scholar 

  • Mejlon HA, Jaenson TGT (1997) Questing behaviour of Ixodes ricinus (Acari: Ixodidae). Exp Appl Acarol 21:247–255

    Article  PubMed  CAS  Google Scholar 

  • Møller AP (2002) Temporal change in mite abundance and its effect on barn swallow reproduction and sexual selection. J Evol Biol 15:495–504

    Article  Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford series in ecology and evolution. Oxford University Press, New York

    Google Scholar 

  • Mooring MS, Blumstein DT, Stoner CJ (2004) The evolution of parasite-defence grooming in ungulates. Biol J Linn Soc 81:17–37

    Article  Google Scholar 

  • Mougeot F, Moseley M, Leckie F, Martinez-Padilla J, Miller A, Pounds N, Irvine RJ (2008) Reducing tick burdens on chicks by treating breeding female grouse with permethrin. J Wildl Manag 72:468–472

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

    Article  PubMed  CAS  Google Scholar 

  • Müller W, Groothuis TGG, Dijkstra C, Siitari H, Alatalo RV (2004) Maternal antibody transmission and breeding densities in the Black-headed Gull Larus ridibundus. Funct Ecol 18:719–724

    Article  Google Scholar 

  • Müller W, Groothuis TGG, Kasprzik A, Dijkstra C, Alatalo RV, Siitari H (2005) Prenatal androgen exposure modulates cellular and humoral immune function of black-headed gull chicks. Proc Biol Sci 272:1971–1977

    Article  PubMed  Google Scholar 

  • Navara KJ, Hill GE, Mendonca MT (2005) Variable effects of yolk androgens on growth, survival, and immunity in eastern bluebird nestlings. Physiol Biochem Zool 78:570–578

    Article  PubMed  CAS  Google Scholar 

  • Nilsson SG (1984) The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Ornis Scand 15:167–175

    Article  Google Scholar 

  • Randolph SE (2004) Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129:S37–S65

    Article  PubMed  Google Scholar 

  • Richner H, Oppliger A, Christe P (1993) Effect of an ectoparasite on reproduction in great tits. J Anim Ecol 62:703–710

    Article  Google Scholar 

  • Richter D, Spielman A, Komar N, Matuschka FR (2000) Competence of American robins as reservoir hosts for lyme disease spirochetes. Emerg Infect Dis 6:133–138

    Article  PubMed  CAS  Google Scholar 

  • Szép T, Møller AP (2000) Exposure to ectoparasites increases within-brood variability in size and body mass in the sand martin. Oecologia 125:201–207

    Article  Google Scholar 

  • Tomas G, Merino S, Moreno J, Morales J (2007) Consequences of nest reuse for parasite burden and female health and condition in blue tits, Cyanistes caeruleus. Anim Behav 73:805–814

    Article  Google Scholar 

  • Tripet F, Richner H (1997) Host responses to ectoparasites: food compensation by parent blue tits. Oikos 78:557–561

    Article  Google Scholar 

  • Tripet F, Richner H (1999) Dynamics of hen flea Ceratophyllus gallinae subpopulations in blue tit nests. J Insect Behav 12:159–174

    Article  Google Scholar 

  • Tschirren B, Richner H, Schwabl H (2004) Ectoparasite-modulated deposition of maternal androgens in great tit eggs. Proc Biol Sci 271:1371–1375

    Article  PubMed  CAS  Google Scholar 

  • Tschirren B, Saladin V, Fitze PS, Schwabl H, Richner H (2005) Maternal yolk testosterone does not modulate parasite susceptibility or immune function in great tit nestlings. J Anim Ecol 74:675–682

    Article  Google Scholar 

  • Verbeke G, Molenberghs G (2001) Linear mixed models for longitudinal data. Lecture notes in statistics. Springer, Berlin

    Google Scholar 

  • Walter G, Liebisch A, Streichert J (1979) Untersuchungen zur Biologie und Verbreitung von Zecken (Ixodoidea, Ixodidae) in Norddeutschland. Angew Ornithol 5:65–73

    Google Scholar 

  • Wikel SK (1996) Host immunology of host–ectoparasitic arthropod relationships. CAB International, Wallingford

    Google Scholar 

Download references

Acknowledgments

We thank Vivian Goerlich for her support during hormone analysis. WM received funding support by FWO project 1.5.033.07 and KP BOF UA 2008. We are grateful to Maarten Hofman for his assistance in the field.

Experiments were carried out under license of the Flemish Ministry (Agentschap Natuur en Bos) and the experimental protocol was approved by the Ethical Committee of the University of Antwerp.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Heylen.

Additional information

Communicated by J. Graves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heylen, D., Müller, W., Groothuis, T.G.G. et al. Female great tits do not alter their yolk androgen deposition when infested with a low-transmittable ectoparasite. Behav Ecol Sociobiol 66, 287–293 (2012). https://doi.org/10.1007/s00265-011-1276-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-011-1276-1

Keywords

Navigation