Skip to main content
Log in

Social networks and models for collective motion in animals

  • Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The theory of collective motion and the study of animal social networks have, each individually, received much attention. Currently, most models of collective motion do not consider social network structure. The implications for considering collective motion and social networks together are likely to be important. Social networks could determine how populations move in, split up into and form separate groups (social networks affecting collective motion). Conversely, collective movement could change the structure of social networks by creating social ties that did not exist previously and maintaining existing ties (collective motion affecting social networks). Thus, there is a need to combine the two areas of research and examine the relationship between network structure and collective motion. Here, we review different modelling approaches that combine social network structures and collective motion. Although many of these models have not been developed with ecology in mind, they present a current context in which a biologically relevant theory can be developed. We argue that future models in ecology should take inspiration from empirical observations and consider different mechanisms of how social preferences could be expressed in collectively moving animal groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bajec IL, Heppner FH (2009) Organized flight in birds. Anim Behav 78:777–789

    Article  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA 105:1232–1237

    Article  CAS  PubMed  Google Scholar 

  • Belmonte JM, Thomas GL, Brunnet LG, de Almeida RMC, Chaté H (2008) Self-propelled particle model for cell-sorting phenomena. Phys Rev Lett 100:248702

    Article  PubMed  CAS  Google Scholar 

  • Bode NWF, Faria JJ, Franks DW, Krause J, Wood AJ (2010a) How perceived threat increases synchronization in collectively moving animal groups. Proc R Soc B (published online). doi:10.1098/rspb.2010.0855

    Google Scholar 

  • Bode NWF, Franks DW, Wood AJ (2010b) Limited interactions in flocks: relating model simulations to empirical data. J R Soc Interface (published online). doi:10.1098/rsif.2010.0397

    Google Scholar 

  • Borrel V, Legendre F, De Amorim MD, Fdida S (2009) Simps: using sociology for personal mobility. IEEE/ACM Trans Netw 17:831–842

    Article  Google Scholar 

  • Braun A, Musse SR, de Oliveira LPL, and Bodmann BEJ (2003) Modeling individual behaviors in crowd simulation. Proc. 16th Int. Conf. Computer Animation and Social Agents, pp 143–148

  • Bumann D, Krause J, Rubenstein D (1997) Mortality risk of spatial positions in animal groups: the danger of being in the front. Behaviour 134:1063–1076

    Article  Google Scholar 

  • Buscarino A, Fortuna L, Frasca M, Rizzo A (2006) Dynamical network interactions in distributed control of robots. Chaos 16:015116

    Article  PubMed  Google Scholar 

  • Conradt L, Krause J, Couzin ID, Roper TJ (2009) “Leading according to need” in self-organizing groups. Am Nat 173:304–312

    Article  CAS  PubMed  Google Scholar 

  • Consolini L, Morbidi F, Prattichizzo D, Tosques M (2008) Leader–follower formation control of nonholonomic mobile robots with input constraints. Automatica 44:1343–1349

    Article  Google Scholar 

  • Correll N, Sempo G, Lopez de Meneses Y, Halloy J, Deneubourg JL, and Martinoli A (2006) SwisTrack: a tracking tool for multi-robotic and biological systems. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2185–2191

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516

    Article  CAS  PubMed  Google Scholar 

  • Croft DP, Arrowsmith BJ, Bielby J, Skinner K, White E, Couzin ID, Magurran AE, Ramnarine I, Krause J (2003) Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos 100:429–438

    Article  Google Scholar 

  • Croft DP, Krause J, James R (2004) Social networks in the guppy (Poecilia reticulata). Proc R Soc B 271:S516–S519

    Article  PubMed  Google Scholar 

  • Croft DP, James R, Ward AJW, Botham MS, Mawdsley D, Krause J (2005) Assortative interactions and social networks in fish. Oecologia 143:211–219

    Article  CAS  PubMed  Google Scholar 

  • Croft DP, James R, Krause J (2008) Exploring animal social networks. Princeton University Press, Princeton

    Google Scholar 

  • Croft DP, Krause J, Darden SK, Ramnarine IW, Faria JJ, James R (2009) Behavioural trait assortment in a social network: patterns and implications. Behav Ecol Sociobiol 63:1495–1503

    Article  Google Scholar 

  • Cross PC, Lloyd-Smith JO, Getz WM (2005) Disentangling association patterns in fission–fusion societies using African buffalo as an example. Anim Behav 69:499–506

    Article  Google Scholar 

  • De Smet F, Aeyels D (2009) Clustering in a network of non-identical and mutually interacting agents. Proc R Soc A 465:745–768

    Article  Google Scholar 

  • Dugatkin LA, Wilson DS (2000) Assortative interactions and the evolution of cooperation during predator inspection in guppies (Poecilia reticulata). Evol Ecol Res 2:761–767

    Google Scholar 

  • Espmark Y (1971) Individual recognition by voice in reindeer mother–young relationship. Field observations and playback experiments. Behaviour 40:295–301

    Article  CAS  PubMed  Google Scholar 

  • Franks DW, Ruxton GD, James R (2010) Sampling animal association networks with the gambit of the group. Behav Ecol Sociobiol 64:493–503

    Article  Google Scholar 

  • Frère CH, Krützen M, Mann J, Watson-Capps JJ, Tsai YJ, Patterson EM, Connor R, Bejder L, Sherwin WB (2010) Home range overlap, matrilineal and biparental kinship drive female associations in bottlenose dolphins. Anim Behav 80(3):481–486

    Article  Google Scholar 

  • Fridman N, Kaminka GA (2007) Towards a cognitive model of crowd behavior based on social comparison theory. Proc 22nd Natl Conf Artif Intell 22:731–737

    Google Scholar 

  • Griffiths SW, Magurran AE (1997) Schooling preferences for familiar fish vary with group size in a wild guppy population. Proc R Soc B 264:547–551

    Article  Google Scholar 

  • Griffiths SW, Magurran AE (1999) Schooling decisions in guppies (Poecilia reticulata) are based on familiarity rather than kin recognition by phenotype matching. Behav Ecol Sociobiol 45:437–443

    Article  Google Scholar 

  • Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. J R Soc Interface 5:259–271

    Article  PubMed  Google Scholar 

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    Article  CAS  PubMed  Google Scholar 

  • Hemelrijk CK (2000) Towards the integration of social dominance and spatial structure. Anim Behav 59:1035–1048

    Article  PubMed  Google Scholar 

  • Hemelrijk CK, Kunz H (2005) Density distribution and size sorting in fish schools: an individual-based model. Behav Ecol 16:178–187

    Article  Google Scholar 

  • Hemelrijk CK, Hildenbrandt H (2008) Self-organized shape and frontal density of fish schools. Ethology 114:245–254

    Article  Google Scholar 

  • Hu J, Hong Y (2007) Leader-following coordination of multi-agent systems with coupling time delays. Phys A 374:853–863

    Article  Google Scholar 

  • Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Control 48:988–1001

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Croft DP, James R (2007) Social network theory in the behavioural sciences: potential applications. Behav Ecol Sociobiol 62:15–27

    Article  Google Scholar 

  • Krause J, Lusseau D, James R (2009) Animal social networks: an introduction. Behav Ecol Sociobiol 63:967–973

    Article  Google Scholar 

  • Lemasson BH, Anderson JJ, Goodwin RA (2009) Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention. J Theor Biol 261:501–510

    Article  CAS  PubMed  Google Scholar 

  • Li W (2008) Stability analysis of swarms with general topology. IEEE Trans Syst Man Cy B 38:1084–1097

    Article  Google Scholar 

  • Lin Z, Francis B, Maggiore M (2005) Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans Automat Control 50:121–127

    Article  Google Scholar 

  • Liu B, Chu T, Wang L, Wang Z (2008) Collective motion of a class of social foraging swarms. Chaos Solitons Fract 38:277–292

    Article  Google Scholar 

  • Liu B, Chu T, Wang L (2009) Collective motion in non-reciprocal swarms. J Control Theory Appl 7:105–111

    Article  Google Scholar 

  • Liu Y, Passino KM, Polycarpou MM (2003) Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology. IEEE Trans Automat Control 48:76–95

    Article  Google Scholar 

  • Loscos C, Marchal D, and Meyer A (2003) Intuitive crowd behavior in dense urban environments using local laws. Proceedings, In Theory and Practice of Computer Graphics, 2003, pp 122–129

  • Lusseau D (2007) Evidence for social role in a dolphin social network. Evol Ecol 21:357–366

    Article  Google Scholar 

  • Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc R Soc B 271:S477–S481

    Article  PubMed  Google Scholar 

  • Lusseau D, Wilson BEN, Hammond PS, Grellier K, Durban JW, Parsons KM, Barton TR, Thompson PM (2006) Quantifying the influence of sociality on population structure in bottlenose dolphins. J Anim Ecol 75:14–24

    Article  PubMed  Google Scholar 

  • McComb K, Moss C, Sayialel S, Baker L (2000) Unusually extensive networks of vocal recognition in African elephants. Anim Behav 59:1103–1109

    Article  PubMed  Google Scholar 

  • Michelena P, Jeanson R, Deneubourg JL, Sibbald AM (2010) Personality and collective decision-making in foraging herbivores. Proc R Soc B 277:1093–1099

    Article  PubMed  Google Scholar 

  • Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5:e10047

    Article  PubMed  CAS  Google Scholar 

  • Musolesi M, Hailes S, and Mascolo C (2004) An ad hoc mobility model founded on social network theory. Proc. 7th ACM Int. Symp. Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp 20–24

  • Musse SR, Thalmann D (1997) A model of human crowd behavior: group inter-relationship and collision detection analysis. Comput Animation Simul 97:39–51

    Google Scholar 

  • Nagy M, Ákos Z, Biro D, Vicsek T (2010) Hierarchical group dynamics in pigeon flocks. Nature 464:890–893

    Article  CAS  PubMed  Google Scholar 

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford

    Google Scholar 

  • Paley DA, Leonard NE, Sepulchre R (2008) Stabilization of symmetric formations to motion around convex loops. Syst Control Lett 57:209–215

    Article  Google Scholar 

  • Petit O, Bon R (2010) Decision-making processes: the case of collective movements. Behav Proc 84:635–647

    Article  Google Scholar 

  • Piyapong C, Krause J, Chapman BB, Ramnarine IW, Louca V, Croft DP (2010) Sex matters: a social context to boldness in guppies (Poecilia reticulata). Behav Ecol 21:3–8

    Article  Google Scholar 

  • Qiu F, Hu X (2010) Modeling group structures in pedestrian crowd simulation. Simul Model Pract Theory 18:190–205

    Article  Google Scholar 

  • Quera V, Beltran FS, Dolado R (2010) Flocking behaviour: agent-based simulation and hierarchical leadership. JASSS 13:8

    Google Scholar 

  • Saber RO and Murray RM (2003) Agreement problems in networks with directed graphs and switching topology. Proc. 42nd IEEE Conf. Decision and Control, pp 4126–4132

  • Şahin E, Labella TH, Trianni V, Deneubourg JL, Rasse P, Floreano D, Gambardella LM, Mondada F, Nolfi S, Dorigo M (2002) SWARM-BOT: pattern formation in a swarm of self-assembling mobile robots. Proc. IEEE Intern. Conference on Systems, Man and Cybernetics

  • Sarlette A, Sepulchre R, Leonard NE (2009) Autonomous rigid body attitude synchronization. Automatica 45:572–577

    Article  Google Scholar 

  • Savkin AV (2004) Coordinated collective motion of groups of autonomous mobile robots: analysis of Vicsek’s model. IEEE Trans Automat Control 49:981–983

    Article  Google Scholar 

  • Šárová R, Špinka M, Panamá JLA, Šimeček P (2010) Graded leadership by dominant animals in a herd of female beef cattle on pasture. Anim Behav 79:1037–1045

    Article  Google Scholar 

  • Scardovi L, Leonard NE, and Sepulchre R (2007) Stabilization of collective motion in three dimensions: a consensus approach. Proc 46th IEEE Conf. Decis. Control, pp 4368–4373

  • Sepulchre R, Paley D, and Leonard NE (2005) Graph Laplacian and Lyapunov design of collective planar motions. Proc. Int. Symp. Nonlinear Theory and its Application

  • Sepulchre R, Paley DA, Leonard NE (2007) Stabilization of planar collective motion: all-to-all communication. IEEE Trans Automat Control 52:811–824

    Article  Google Scholar 

  • Sepulchre R, Paley DA, Leonard NE (2008) Stabilization of planar collective motion with limited communication. IEEE Trans Automat Control 53:706–719

    Article  Google Scholar 

  • Shi H, Wang L, Chu T, Xu M (2005) Flocking control of multiple interactive dynamical agents with switching topology via local feedback. Adv Artif Life 3630:604–613

    Article  Google Scholar 

  • Sih A, Hanser SF, McHugh KA (2009) Social network theory: new insights and issues for behavioral ecologists. Behav Ecol Sociobiol 63:975–988

    Article  Google Scholar 

  • Sueur C, Petit O, Deneubourg JL (2010) Short-term group fission processes in macaques: a social networking approach. J Exp Biol 213:1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Sumpter DJT (2006) The principles of collective animal behaviour. Philos Trans R Soc B 361:5–22

    Article  CAS  Google Scholar 

  • Tanner HG (2004) Flocking with obstacle avoidance in switching networks of interconnected vehicles. Proc IEEE Int Conf Robot Automation 3:3006–3011

    Google Scholar 

  • Tanner HG, Jadbabaie A, Pappas GJ (2003) Stable flocking of mobile agents, Part I: fixed topology. Proc 42nd IEEE Conf Decis Control 2:2010–2015

    Google Scholar 

  • Toner J, Tu Y (1995) Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys Rev Lett 75:4326–4329

    Article  CAS  PubMed  Google Scholar 

  • Trianni V, Dorigo M (2006) Self-organisation and communication in groups of simulated and physical robots. Biol Cybern 95:213–231

    Article  PubMed  Google Scholar 

  • Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229

    Article  CAS  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Wessnitzer J, Adamatzky A, Melhuish C (2001) Towards self-organising structure formations: a decentralized approach. Adv Artif Life 2159:573–581

    Article  Google Scholar 

  • Whitehead H (2008) Analyzing animal societies: quantitative methods for vertebrate social analysis. University Of Chicago Press, Chicago

    Google Scholar 

  • Whitehead H, Dufault S (1999) Techniques for analyzing vertebrate social structure using identified individuals: review and recommendations. Adv Stud Behav 28:33–74

    Article  Google Scholar 

  • Wood AJ (2010) Strategy selection under predation; evolutionary analysis of the emergence of cohesive aggregations. J Theor Biol 264:1102–1110

    Article  PubMed  Google Scholar 

  • Yu H, Wang Y (2008) Coordinated collective motion of groups of autonomous mobile robots with directed interconnected topology. J Intell Robot Syst 53:87–98

    Article  Google Scholar 

  • Zavlanos MM, Jadbabaie A, and Pappas GJ (2007) Flocking while preserving network connectivity. Proc. 46th IEEE Conf. Decis. Control, pp 3196–3201

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers for their insightful and constructive comments and Jon Pitchford and Peter Mayhew for carefully reading the manuscript. N.W.F.B.’s research is supported by the Natural Environment Research Council. D.W.F. and A.J.W. are supported by RCUK Fellowships. D.W.F. acknowledges support from NERC grant no. NE/E016111/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Franks.

Additional information

Communicated by J. Krause

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, N.W.F., Wood, A.J. & Franks, D.W. Social networks and models for collective motion in animals. Behav Ecol Sociobiol 65, 117–130 (2011). https://doi.org/10.1007/s00265-010-1111-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-1111-0

Keywords

Navigation