Skip to main content
Log in

Sensory allometry, foraging task specialization and resource exploitation in honeybees

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Insect societies are important models for evolutionary biology and sociobiology. The complexity of some eusocial insect societies appears to arise from self-organized task allocation and group cohesion. One of the best-supported models explaining self-organized task allocation in social insects is the response threshold model, which predicts specialization due to inter-individual variability in sensitivity to task-associated stimuli. The model explains foraging task specialization among honeybee workers, but the factors underlying the differences in individual sensitivity remain elusive. Here, we propose that in honeybees, sensory sensitivity correlates with individual differences in the number of sensory structures, as it does in solitary species. Examining European and Africanized honeybees, we introduce and test the hypothesis that body size and/or sensory allometry is associated with foraging task preferences and resource exploitation. We focus on common morphological measures and on the size and number of structures associated with olfactory sensitivity. We show that the number of olfactory sensilla is greater in pollen and water foragers, which are known to exhibit higher sensory sensitivity, compared to nectar foragers. These differences are independent of the distribution of size within a colony. Our data also suggest that body mass and number of olfactory sensilla correlate with the concentration of nectar gathered by workers, and with the size of pollen loads they carry. We conclude that sensory allometry, but not necessarily body size, is associated with resource exploitation in honeybees and that the differences in number of sensilla may underlie the observed differences in sensitivity between bees specialized on water, pollen and nectar collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383

    Article  Google Scholar 

  • Apfelbach R, Russ D, Slotnick BM (1991) Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat. Chem Sens 16:209–218

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    Article  CAS  PubMed  Google Scholar 

  • Beshers SN, Robinson GE, Mittenthal JE (1999) Response thresholds and division of labor in insect colonies. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhauser, Basel, pp 115–139

    Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg JL, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12:188–193

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg JL (1999) Dominance order in animal societies: the self-organization hypothesis revisited. B Math Biol 61:727–757

    Article  CAS  Google Scholar 

  • Bosch J, Vicens N (2006) Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav Ecol Sociobiol 60:26–33

    Article  Google Scholar 

  • Calderone NW, Page RE (1988) Genotypic variability in age polyethism and task specialization in the honeybee, Apis mellifera (Hymenoptera: Apidae). Behav Ecol Sociobiol 30:219–226

    Article  Google Scholar 

  • Chapman RF (1998) The Insects: structure and function, 4th edn. Cambridge University Press

  • Cideciyan M (1984) The relationship between size and behavior in worker honey bees (Apis mellifera). Thesis. University of Miami

  • Domínguez M, Casares F (2005) Organ specification-growth control connection: new in-sights from the Drosophila eye-antennal disc. Dev Dynam 232:673–684

    Article  Google Scholar 

  • Erber J, Hoorman J, Scheiner R (2006) Phototactic behaviour correlates with gustatory responsiveness in honeybees (Apis mellifera L.). Behav Brain Res 174:174–180

    Article  CAS  PubMed  Google Scholar 

  • Farooqui T (2007) Octopamine-mediated neuromodulation of insect senses. Neurochem Res 32:1511–1529

    Article  CAS  PubMed  Google Scholar 

  • Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Amer Nat 167:390–400

    Article  Google Scholar 

  • Frederiksen R, Warrant EJ (2008) Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes? J Exp Biol 211:844–851

    Article  PubMed  Google Scholar 

  • Harrison JM (1986) Caste-specific changes in honeybee flight capacity. Physiol Zool 59:175–187

    Google Scholar 

  • Hayes EJ, Wall R (1999) Age-grading adult insects: a review of techniques. Physiol Entomol 24:1–10

    Article  Google Scholar 

  • Hellmich RL, Kulincevic JM, Rothenbuhler WC (1985) Selection for high and low pollen hoarding honey bees (Apis mellifera). J Hered 76:155–158

    Google Scholar 

  • Higashi M, Yamamura N, Abe T (2000) Theories on the sociality of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic Publishers, pp 169–187

  • Higginson AD, Barnard CJ (2004) Accumulating wing damage affects foraging decisions in honeybees (Apis mellifera L.). Ecol Entomol 29:52–59

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hölldobler B, Wilson EO (2008) The superorganism: the beauty, elegance, and strangeness of insect societies. W.W. Norton & Co, New York

    Google Scholar 

  • Humphries MA, Fondrk MK, Page RE (2005) Locomotion and the pollen hoarding behavioral syndrome of the honey bee (Apis mellifera L.). J Comp Physiol A 191:669–674

    Article  CAS  Google Scholar 

  • Jander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Struct Dev 30:179–193

    Article  PubMed  Google Scholar 

  • Jeanson R, Fewell JH, Gorelick R, Bertram SM (2007) Emergence of increased division of labor as a function of group size. Behav Ecol Sociobiol 62:289–298

    Article  Google Scholar 

  • Johnson BR (2002) Reallocation of labor in honeybee colonies during heat stress: the relative roles of task switching and the activation of reserve labor. Behav Ecol Sociobiol 51:188–196

    Article  Google Scholar 

  • Kapustjanskij A, Streinzer M, Paulus HF, Spaethe J (2007) Bigger is better: implications for flight ability under different conditions and evolution of alloethism in bumblebees. Funct Ecol 21:1130–1136

    Article  Google Scholar 

  • Kelber A, Warrant EJ, Pfaff M, Wallen R, Theobald JC, Wcislo WT (2006) Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav Ecol 17:63–72

    Article  Google Scholar 

  • Kerr WE, Hebling NJ (1964) Influence of the weight of worker bees on division of labor. Evolution 18:267–270

    Article  Google Scholar 

  • Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Zeitschrift fur Vergleichende Physiologie 34:299–345

    Article  Google Scholar 

  • Linksvayer TA, Fondrk MK, Page RE Jr (2009) Honeybee social regulatory networks are shaped by colony level selection. Am Nat 173:E99–E107

    Article  PubMed  Google Scholar 

  • Mertl AL, Traniello JFA (2009) Behavioral evolution in the major worker subcaste of twig-nesting Pheidole (Hymenoptera: Formicidae): does morphological specialization influence task plasticity? Behav Ecol Sociobiol. doi:10.1007/s00265-009-0797-3

    Google Scholar 

  • Michener CD (1974) The social behavior of the bees. Harvard University Press, Cambridge

    Google Scholar 

  • Milne CP (1985) An estimate of heritability of corbicular area of the honeybee. J Apicul Res 24:137–139

    Google Scholar 

  • Milne CP, Friars GF (1984) An estimate of the heritability of honeybee pupal weight. J Hered 75:509–510

    Google Scholar 

  • Milne CP, Hellmich RL, Pries KJ (1986) Corbicular size in workers from honeybee lines selected for high or low pollen hoarding. J Apicult Res 25:50–52

    Google Scholar 

  • Moritz R, Page RE (1999) Behavioral threshold variability, cost and benefits in insect societies. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhauser, Basel, pp 203–218

    Google Scholar 

  • Nijhout HF (2003) The control of growth. Development 130:5863–5867

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413

    Article  PubMed  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  • Page RE, Fondrk MK (1995) The effects of colony-level selection on the social organization of honey bee (Apis mellifera L.) colonies: colony-level components of pollen hoarding. Behav Ecol Sociobiol 36:135–144

    Article  Google Scholar 

  • Page RE, Mitchell SD (1998) Self-organization and the evolution of division of labor. Apidologie 29:171–190

    Article  Google Scholar 

  • Page RE, Amdam GV (2007) The making of a social insect: developmental architectures of social design. Bioessays 29:334–343

    Article  CAS  PubMed  Google Scholar 

  • Page RE Jr, Erber J, Fondrk MK (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honeybees (Apis mellifera). J Comp Physiol A 182:489–500

    Article  PubMed  Google Scholar 

  • Page RE Jr, Scheiner R, Erber J, Amdam GV (2006) The development and evolution of division of labor and foraging specialization in a social insect. Curr Top Dev Biol 74:253–286

    Article  CAS  PubMed  Google Scholar 

  • Page RE, Linksvayer TA, Amdam GV (2009) Social life from solitary regulatory networks: a paradigm for insect sociality. In: Gadau J, Fewell F (eds) Organization of insect societies: from genomes to socio-complexity. Harvard University Press, Cambridge, pp 357–376

    Google Scholar 

  • Pankiw T, Page RE Jr (1999) The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honeybees (Apis mellifera). J Comp Physiol A 185:207–213

    Article  CAS  PubMed  Google Scholar 

  • Pankiw T, Page RE Jr (2000) Response thresholds to sucrose predict foraging behavior in the honey bee (Apis mellifera L.). Behav Ecol Sociobiol 47:265–267

    Article  Google Scholar 

  • Pankiw T, Page RE Jr (2001) Genotype and colony environment affect honeybee (Apis mellifera L.) developmental and foraging behavior. Behav Ecol Sociobiol 51:87–94

    Article  Google Scholar 

  • Pankiw T, Tarpy DR, Page RE Jr (2002) Genotype and rearing environment affect honeybee perception and foraging behaviour. Anim Behav 64:663–672

    Article  Google Scholar 

  • Poklukar J, Kezic N (1994) Estimation of heritability of some characteristics of hind legs and wings of honeybee workers (Apis mellifera carnica) using the half-sibs method. Apidologie 25:3–11

    Article  Google Scholar 

  • Scheiner R, Erber J (2009) Sensory thresholds, learning and the division of foraging labor in the honey bee. In: Gadau J, Fewell J (eds) Organization of insect societies: from genomes to socio-complexity. Harvard University Press, Cambridge, pp 335–356

    Google Scholar 

  • Scheiner R, Page RE, Erber J (2004) Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 35:133–142

    Article  Google Scholar 

  • Scheiner R, Baumann A, Blenau W (2006) Aminergic control and modulation of honeybee behaviour. Curr Neuropharmacol 4:259–276

    Article  CAS  PubMed  Google Scholar 

  • Schippers MP, Dukas R, Smith RW, Wang J, Smolen K, McClelland GB (2006) Lifetime performance in foraging honeybees: behaviour and physiology. J Exp Biol 209:3828–3836

    Article  PubMed  Google Scholar 

  • Schneider D, Steinbrecht RA (1968) Checklist of insect olfactory sensilla. Sym Zool S 23:279–297

    Google Scholar 

  • Schulz DJ, Pankiw T, Fondrk MK, Robinson GE, Page RE Jr (2004) Comparison of juvenile hormone hemolymph and octopamine brain titers in honey bees (Hymenoptera: Apidae) selected strains for high and low pollen hoarding. Ann Entomol Soc Am 97:1313–1319

    Article  CAS  Google Scholar 

  • Smith AR, Wcislo WT, O’Donnell S (2008) Body size shapes caste expression, and cleptoparasitism reduces body size in the facultatively eusocial bees Megalopta (Hymenoptera: Halictidae). J Insect Behav 21:394–406

    Article  Google Scholar 

  • Spaethe J, Weidenmüller A (2002) Size variation and foraging rate in bumblebees (Bombus terrestris). Insect Soc 142–146

  • Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453

    Article  PubMed  Google Scholar 

  • Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733–739

    Article  CAS  PubMed  Google Scholar 

  • Vareschi E (1971) Duftunterscheidung bei der Honigbiene—Einzelzellableitungen und Verhaltensreaktionen. Zeitschrift fur Vergleichende Physiologie 75:143–173

    Google Scholar 

  • Verhoeven KJF, Simonsen KL, McIntyre M (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647

    Article  Google Scholar 

  • Waddington KD (1981) Patterns of size variation in bees and evolution of communication systems. Evolution 35:813–814

    Article  Google Scholar 

  • Waddington KD (1988) Body size, individual behavior and social behavior in honey bees. In: Jeanne RL (ed) Interindividual behavioral variability in social insects. Westview Press, Boulder, pp 385–417

    Google Scholar 

  • Waddington KD (2005) Implications of variation in worker body size for the honey bee recruitment system. J Insect Behav 2:91–103

    Article  Google Scholar 

  • Waddington KD, Herbst LH, Roubik DW (1986) Relationship between recruitment systems of stingless bees and within-nest worker size. J Kansas Entomol Soc 59:95–102

    Google Scholar 

  • Wcislo WT (1995) Sensilla numbers and antennal morphology of parasitic and non-parasitic bees (Hymenoptera: Apoidea). Int J Insect Morphol 24:63–81

    Article  Google Scholar 

  • Wcislo WT, Tierney SM (2009) Behavioural environments and niche construction: the evolution of dim-light foraging in bees. Biol Rev 84:19–37

    Article  PubMed  Google Scholar 

  • Wheeler DE, Buck N, Evans JD (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol Biol 15:597–602

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1975) [2000] Sociobiology: the new synthesis. 25th anniversary edition. Belknap, Cambridge

    Google Scholar 

  • Wilson EO (1985) The principles of caste evolution. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Sinauer, New York, pp 307–324

    Google Scholar 

Download references

Acknowledgments

We thank Jorge Palacios for helping to collect bees, Ashley Wiede, Jonathan Kim, Chirag Patel, and Elizabeth Collier for preparing samples, taking pictures, and measuring bees. We thank Fabiola Santos for help measuring pollen loads. We thank Angelique Paulk for helpful suggestions on methods and Ruben Alarcon for help with the statistical analysis. We thank Gloria Degrandi-Hoffman and the USDA Carl Hayden Honey Bee Research Center for generously providing us with European honeybees. We thank Ruben Alarcon, Daniel Papaj, Diana Wheeler and two anonymous reviewers for constructive criticisms that contributed to improve this manuscript. This work was supported by a grant of the National Science Foundation of the United States of America (IOB-0519483) to WG. Additional support was provided by the Center for Insect Science (University of Arizona) to AJR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre J. Riveros.

Additional information

Communicated by R. Moritz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riveros, A.J., Gronenberg, W. Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behav Ecol Sociobiol 64, 955–966 (2010). https://doi.org/10.1007/s00265-010-0911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-0911-6

Keywords

Navigation