Skip to main content

Advertisement

Log in

Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm’s owl

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Within a family there are conflicts of interest between parents and offspring, and between male and female parents, over the supply of parental care. The observed pattern of parental care is the outcome of negotiations within the family, and may be influenced by environmental factors such as food abundance. We experimentally increased food supply to ten Tengmalm’s owl (Aegolius funereus) nests from hatching to fledging, mimicking natural cached prey. Ten un-supplemented nests served as controls. Parents and offspring were fitted with radio-tags. Food provisioning by parents was measured both in the (1) mid- and (2) late nestling stage and in the (3) early and (4) late post-fledging stage. In response to food supplementation, both males and females reduced food provisioning, but the effect was more pronounced in females. Females generally contributed much less to food provisioning than males, and food supplementation increased the difference between the sexes. Mass loss during the brooding stage was substantially lower for supplemented than for control females. Food supplementation did not improve offspring survival, and had no effect on body measurements of nestlings. In conclusion, parents of both sexes used the increased food supply to reduce the costs of caring for their current offspring, but females responded more strongly than males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manage 65:373–378

    Article  Google Scholar 

  • Andersson M (1981) On optimal predator search. Theor Popul Biol 19:58–86

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2008) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  Google Scholar 

  • Brodin A, Jönsson KI, Holmgren N (2003) Optimal energy allocation and behaviour in female raptorial birds during the nestling period. Écoscience 10:140–150

    Google Scholar 

  • Brommer JE, Pietiäinen H, Kolunen H (1998) The effect of age at first breeding on Ural owl lifetime reproductive success and fitness under cyclic food conditions. J Anim Ecol 67:359–369

    Article  Google Scholar 

  • Brommer J, Kokko H, Pietiäinen H (2000) Reproductive effort and reproductive values in periodic environments. Am Nat 155:454–472. doi:10.1086/303335

    Article  Google Scholar 

  • Brommer JE, Karell P, Pietiäinen H (2004) Supplementary fed Ural owls increase their reproductive output with a one year time lag. Oecologia 139:354–358. doi:10.1007/s00442-004-1528-0

    Article  PubMed  Google Scholar 

  • Bye FN, Jacobsen BV, Sonerud GA (1992) Auditory prey location in a pause-travel predator: search height, search time, and attack range of Tengmalm's Owls (Aegolius funereus). Behav Ecol 3:266–276

    Article  Google Scholar 

  • Byholm P, Kekkonen M (2008) Food regulates reproduction differently in different habitats: experimental evidence in the goshawk. Ecology 89:1696–1702. doi:10.1890/07-0675.1

    Article  PubMed  Google Scholar 

  • Carlsson BG (1991) Recruitment of mates and deceptive behavior by male Tengmalm’s owls. Behav Ecol Sociobiol 28:321–328

    Article  Google Scholar 

  • Carlsson BG, Hörnfeldt B, Löfgren O (1987) Bigyny in Tengmalm’s Owl Aegolius funereus: effect of mating strategy on breeding success. Ornis Scand 18:237–243

    Article  Google Scholar 

  • Chase I (1980) Cooperative and noncooperative behavior in animals. Am Nat 115:827–857

    Article  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. University of Chicago Press, Chicago

    Google Scholar 

  • Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press, Princeton

    Google Scholar 

  • Cockburn A (2006) Prevalence of different modes of parental care in birds. Proc R Soc B 273:1375–1383. doi:10.1098/rspb.2005.3458

    Article  PubMed  Google Scholar 

  • Cramp S (1985) Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic. Vol 4, Terns to woodpeckers. Oxford University Press, Oxford

    Google Scholar 

  • Dawson RD, Bortolotti GR (2002) Experimental evidence for food limitation and sex-specific strategies of American kestrels (Falco sparverius) provisioning offspring. Behav Ecol Sociobiol 52:43–52. doi:10.1007/s00265-002-0486-y

    Article  Google Scholar 

  • Eldegard K, Sonerud GA (2009) Female offspring desertion and male-only care increase with natural and experimental increase in food abundance. Proc R Soc B 276:1713–1721. doi:10.1098/rspb.2008.1775

    Article  PubMed  Google Scholar 

  • Eldegard K, Selås V, Sonerud GA, Steel C, Rafoss T (2003) The effect of parent sex on prey deliveries to fledgling Eurasian Sparrowhawks Accipiter nisus. Ibis 145:667–672. doi:10.1046/j.1474-919X.2003.00229.x

    Article  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223. doi:10.1126/science.327542

    Article  CAS  PubMed  Google Scholar 

  • Espie RHM, Oliphant LW, James PC, Warkentin IG, Lieske DJ (2000) Age-dependent breeding performance in Merlins (Falco columbarius). Ecology 81:3404–3415

    Google Scholar 

  • Freed LA (1981) Loss of mass in breeding wrens: stress or adaptation? Ecology 62:1179–1186

    Article  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • González LM, Margalida A, Sánchez R, Oria J (2006) Supplementary feeding as an effective tool for improving breeding success in the Spanish imperial eagle (Aquila adalberti). Biol Conserv 129:477–486. doi:10.1016/j.biocon.2005.11.014

    Article  Google Scholar 

  • Granbom M, Smith HG (2006) Food limitation during breeding in a heterogeneous landscape. Auk 123:97–107. doi:10.1642/0004-8038(2006)123[0097:FLDBIA]2.0.CO;2

    Article  Google Scholar 

  • Hakkarainen H, Korpimäki E (1991) Reversed sexual size dimorphism in Tengmalm's owl: is small male size adaptive? Oikos 61:337–346

    Article  Google Scholar 

  • Hakkarainen H, Korpimäki E (1994) Nest defence of Tengmalm’s owls reflects offspring survival prospects under fluctuating food conditions. Anim Behav 48:843–849

    Article  Google Scholar 

  • Hakkarainen H, Korpimäki E (1995) Contrasting phenotypic correlations in food provision of male Tengmalm's owls (Aegolius funereus) in a temporally heterogenous environment. Evol Ecol 9:30–37

    Article  Google Scholar 

  • Hakkarainen H, Korpimäki E (1998) Why do territorial male Tengmalm’s owls fail to obtain a mate? Oecologia 114:578–582. doi:10.1007/s004420050483

    Article  Google Scholar 

  • Hinde CA (2006) Negotiation over offspring care?—a positive response to partner-provisioning rate in great tits. Behav Ecol 17:6–12. doi:10.1093/beheco/ari092

    Article  Google Scholar 

  • Hinde CA, Kilner RM (2007) Negotiations within the family over the supply of parental care. Proc R Soc B 274:53–60. doi:10.1098/rspb.2006.3692

    Article  PubMed  Google Scholar 

  • Hipkiss T (2002) Sexual size dimorphism in Tengmalm’s owl (Aegolius funereus) on autumn migration. J Zool 257:281–285

    Article  Google Scholar 

  • Hipkiss T, Hörnfeldt B, Eklund U, Berlin S (2002) Year-dependent sex-biased mortality in supplementary-fed Tengmalm's owl nestlings. J Anim Ecol 71:693–699

    Google Scholar 

  • Houston AI, Davies NB (1985) The evolution of cooperation and life history in the dunnock, Prunella modularis. In: Sibly RM, Smith RH (eds) Behavioural ecology: ecological consequences of adaptive behaviour. Blackwell, Oxford, pp 471–487

    Google Scholar 

  • Houston AI, Székely T, McNamara JM (2005) Conflict between parents over care. Trends Ecol Evol 20:33–38. doi:10.1016/j.tree.2004.10.008

    Article  PubMed  Google Scholar 

  • Hörnfeldt B, Hipkiss T, Eklund U (2005) Fading out of vole and predator cycles? Proc R Soc B 272:2045–2049. doi:10.1098/rspb.2005.3141

    Article  PubMed  Google Scholar 

  • Jodice PGR, Roby DD, Hatch SA, Gill VA, Lanctot RB, Visser GH (2002) Does food availability affect energy expenditure rates of nesting seabirds? A supplemental-feeding experiment with Black-legged Kittiwakes (Rissa tridactyla). Can J Zool 80:214–222. doi:10.1139/Z01-221

    Article  Google Scholar 

  • Johnstone RA, Hinde CA (2006) Negotiation over offspring care—how should parents respond to each other’s efforts? Behav Ecol 17:818–827. doi:10.1093/beheco/arl009

    Article  Google Scholar 

  • Karell P, Pietiäinen H, Siitari H, Pihlaja T, Kontiainen P, Brommer JE (2009) Parental allocation of additional food to own health and offspring growth in a variable environment. Can J Zool 87:8–19. doi:10.1139/Z08-133

    Article  Google Scholar 

  • Kontiainen P, Pietiäinen H, Huttunen K, Karell P, Kolunen H, Brommer JE (2009) Aggressive Ural owl mothers recruit more offspring. Behav Ecol 20:789–796. doi:10.1093/beheco/arp062

    Article  Google Scholar 

  • Korpimäki E (1981) On the ecology and biology of Tengmalm's Owl (Aegolius funereus) in Southern Ostrobothnia and Suomenselkä, western Finland. Acta Univ Ouluensis Ser A Biol 13:1–84

    Google Scholar 

  • Korpimäki E (1987) Prey caching of breeding Tengmalm's Owls Aegolius funereus as a buffer against temporary food shortage. Ibis 129:499–510

    Article  Google Scholar 

  • Korpimäki E (1988a) Factors promoting polygyny in European birds of prey—a hypothesis. Oecologia 77:278–285. doi:10.1007/BF00379199

    Article  Google Scholar 

  • Korpimäki E (1988b) Diet of breeding Tengmalm's Owls Aegolius funereus: long term changes and year-to-year variation under cyclic food conditions. Ornis Fenn 65:21–30

    Article  Google Scholar 

  • Korpimäki E (1989) Mating system and mate choice of Tengmalm's owls Aegolius funereus. Ibis 131:41–50

    Article  Google Scholar 

  • Korpimäki E (1990) Body mass of breeding Tengmalm's Owls Aegolius funereus: seasonal, between-year, site and age-related variation. Ornis Scand 21:169–178

    Article  Google Scholar 

  • Korpimäki E (1991) Poor reproductive success of polygynously mated female Tengmalm's owls: are better options available? Anim Behav 41:37–47

    Article  Google Scholar 

  • Korpimäki E (1992) Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J Anim Ecol 61:103–111

    Article  Google Scholar 

  • Korpimäki E, Lagerström M (1988) Survival and natal dispersal of fledglings of Tengmalm's owl in relation to fluctuating food conditions and hatching date. J Anim Ecol 57:433–441

    Article  Google Scholar 

  • Korpimäki E, Lagerström M, Saurola P (1987) Field evidence for nomadism in Tengmalm’s Owl Aegolius funereus. Ornis Scand 18:1–4

    Article  Google Scholar 

  • Kosztolányi A, Cuthill IC, Székely T (2008) Negotiation between parents over care: reversible compensation during incubation. Behav Ecol 20:446–452. doi:10.1093/beheco/arn140

    Article  Google Scholar 

  • Krokene C, Anthonisen K, Lifjeld JT, Amundsen T (1996) Paternity and paternity assurance behaviour in the Bluethroath, Luscinia s. svecica. Anim Behav 52:405–417

    Article  Google Scholar 

  • Lessells CM, Parker GA (1999) Parent-offspring conflict: the full-sib-half-sib fallacy. Proc R Soc Lond B 266:1637–1643

    Article  Google Scholar 

  • Löfgren O, Hörnfeldt B, Carlsson BG (1986) Site tenacity and nomadism in Tengmalm’s Owl (Aegolius funereus (L.)) in relation to cyclic food production. Oecologia 69:321–326

    Article  Google Scholar 

  • Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annu Rev Ecol Syst 18:453–487

    Article  Google Scholar 

  • Masman D, Klaassen M (1987) Energy expenditure during free flight in trained and free-living Eurasian Kestrels (Falco tinnunculus). Auk 104:603–616

    Google Scholar 

  • McNamara JM, Gasson CE, Houston AI (1999) Incorporating rules for responding into evolutionary games. Nature 401:368–371

    CAS  PubMed  Google Scholar 

  • McNamara JM, Houston AI, Barta Z, Osorno J-L (2003) Should young ever be better off with one parent than with two? Behav Ecol 14:301–310

    Article  Google Scholar 

  • Mikkola H (1983) Owls of Europe. Poyser, Calton

    Google Scholar 

  • Mock DW, Schwagmeyer PL, Parker GA (2005) Male house sparrows deliver more food to experimentally subsidized offspring. Anim Behav 70:225–236. doi:0.1016/j.anbehav.2004.10.020

    Article  Google Scholar 

  • Newton I (1979) Population ecology of raptors. Poyser, Berkhamsted

    Google Scholar 

  • Newton I (1989) Lifetime reproduction in birds. Academic, London

    Google Scholar 

  • Norberg RÅ (1970) Hunting technique of Tengmalm's Owl Aegolius funereus. Ornis Scand 1:51–64

    Article  Google Scholar 

  • Norberg RÅ (1981) Temporary weight decrease in breeding birds may result in more fledged young. Am Nat 118:838–850

    Article  Google Scholar 

  • Olson VA, Liker A, Freckleton RP, Székely T (2008) Parental conflict in birds: comparative analyses of offspring development, ecology and mating opportunities. Proc R Soc B 275:301–307. doi:10.1098/rspb.2007.1395

    Article  CAS  PubMed  Google Scholar 

  • Orians GH (1969) On the evolution of mating systems in birds and mammals. Am Nat 103:589–603. doi:10.1086/282628

    Article  Google Scholar 

  • Parker GA, Royle NJ, Hartley IR (2002) Intrafamilial conflict and parental investment: a synthesis. Philos Trans R Soc Lond B 357:295–307. doi:10.1098/rstb.2001.0950

    Article  Google Scholar 

  • Solheim R (1983) Bigyny and biandry in the Tengmalm’s owl Aegolius funereus. Ornis Scand 14:51–75. doi:10.2307/3676251

    Article  Google Scholar 

  • Sonerud GA (1986) Effect of snow cover on seasonal changes in diet, habitat, and regional distribution of raptors that prey on small mammals in boreal zones of Fennoscandia. Holarct Ecol 9:33–47

    Google Scholar 

  • Sonerud GA (1988a) Two nestings of a Tengmalm’s owl Aegolius funereus female in one season. Fauna Norv Ser C, Cinclus 11:47–48

    Google Scholar 

  • Sonerud GA (1988b) What causes extended lows in microtine cycles? Analysis of fluctuations in sympatric shrew and microtine populations in Fennoscandia. Oecologia 76:37–42

    Google Scholar 

  • Sonerud GA, Solheim R, Prestrud K (1988) Dispersal of Tengmalm’s Owl Aegolius funereus in relation to prey availability and nesting success. Ornis Scand 19:175–181

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  • Steen H, Ims RA, Sonerud GA (1996) Spatial and temporal patterns of small-rodent population dynamics at a regional scale. Ecology 77:2365–2372

    Article  Google Scholar 

  • Sunde P, Bølstad MS, Møller JD (2003) Reversed sexual dimorphism in tawny owls, Strix aluco, correlates with duty division in breeding effort. Oikos 101:265–278. doi:10.1034/j.1600-0706.2003.12203.x

    Article  Google Scholar 

  • Sundell J, Huitu O, Henttonen H, Kaikusalo A, Korpimäki E, Pietiäinen H, Saurola P, Hanski I (2004) Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J Anim Ecol 73:167–178. doi:10.1111/j.1365-2656.2004.00795.x

    Article  Google Scholar 

  • Svensson L (1992) Identification guide to European passerines. Svensson, Stockholm

    Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man, 1871-1971. Aldine Atherton, Chicago, pp 136–179

    Google Scholar 

  • Wallin K (1988) Life history evolution and ecology in the Tawny Owl Strix aluco. Dissertation, University of Göteborg

  • Ward JM, Kennedy PL (1996) Effects of supplemental food on size and survival of juvenile northern goshawks. Auk 113:200–208

    Google Scholar 

  • Wernham CV, Bryant DM (1998) An experimental study of reduced parental effort and future reproductive success in the puffin, Fratercula arctica. J Anim Ecol 67:25–40

    Article  Google Scholar 

  • Wiehn J, Korpimäki E (1997) Food limitation on brood size: experimental evidence in the Eurasian Kestrel. Ecology 78:2043–2050

    Article  Google Scholar 

Download references

Acknowledgements

We thank O. Heie, E. J. Hildrum and H. Vognild for assistance in the field; R. Bjørnstad, G. Nyhus, the late F. Rønning, K. Skjærvik, O. Skjærvik, T. Wernberg and E. Østby for finding some of the of owl nests; H. Birkelund for X-raying nest remains, G. Bjørnstad for instructions on blood sampling and DNA extraction of blood samples; K. Kjus for providing laboratory mice; J. Beheim and H. Klungland for analysing blood samples and S. Dale, R. Å. Norberg, D. Oughton, V. Selås, T. Slagsvold, J. Swenson, E. Tryterud, J. O. Vik and two anonymous referees for comments on previous drafts of the manuscript.

Ethical standards

The experiments in this study comply with Norwegian law, the Directorate for Nature Management and the National Animal Research Authority in Norway granted permission to trap and radio-tag the owls, and the Directorate for Nature Management granted permission to trap small mammals.

Funding

The Research Council of Norway and the Nansen Endowment provided financial support for the study. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrine Eldegard.

Additional information

Communicated by E. Korpimäki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldegard, K., Sonerud, G.A. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm’s owl. Behav Ecol Sociobiol 64, 815–826 (2010). https://doi.org/10.1007/s00265-009-0898-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-009-0898-z

Keywords

Navigation