Skip to main content
Log in

The roles of sensory traps in the origin, maintenance, and breakdown of mutualism

  • Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Sensory traps are signal mimics that elicit out-of-context behaviors by exploiting the adaptive, neural responses of signal receivers. Sensory traps have long been invoked in studies of mate and prey attraction, but the possible roles of sensory traps in mutualisms (cooperation between species) have yet to be thoroughly examined. Our review identifies four candidate roles for sensory traps in the evolution of mutualistic interactions: reassembly, error reduction, enforcement, and cost reduction. A key consequence of sensory traps is that they limit the applicability of partner choice and biological market models of mutualism. We conclude by suggesting that an important research topic in the evolution of cooperation should be to identify any mechanisms that increase the truthfulness of communication between cooperating species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agren J, Schemske DW (1991) Pollination by deceit in a neotropical monoecious herb, Begonia involucrata. Biotropica 23:235–241

    Article  Google Scholar 

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond Ser B 266:1419–1426

    Article  CAS  Google Scholar 

  • Als TD, Nash DR, Boomsma JJ (2001) Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim Behav 62:99–106

    Article  Google Scholar 

  • Als TD, Vila R, Kandul NP, Nash DR, Yen SH, Hsu YF, Mignault AA, Boomsma JJ, Pierce NE (2004) The evolution of alternative parasitic life histories in large blue butterflies. Nature 432:386–390

    Article  PubMed  CAS  Google Scholar 

  • Anstett MC (1999) An experimental study of the interaction between the dwarf palm (Chamaerops humilis) and its floral visitor Derelomus chamaeropsis throughout the life cycle of the weevil. Acta Oecol 20:551–558

    Article  Google Scholar 

  • Armbruster WS, Antonsen L, Pelabon C (2005) Phenotypic selection on Dalechampia blossoms: honest signaling affects pollination success. Ecology 86:3323–3333

    Article  Google Scholar 

  • Bergstrom CT, Bronstein JL, Bshary R, Connor RC, Daly M, Frank SA, Gintis H, Keller L, Leimar O, Noe R, Queller DC (2003) Group report: interspecific mutualism. Puzzles and predictions. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, pp 241–256

    Google Scholar 

  • Borgkarlson AK, Bergstrom G, Groth I (1985) Chemical basis for the relationship between Ophrys orchids and their pollinators, 1. Volatile compounds of Ophrys lutea and O. fusca as insect mimetic attractants/excitants. Chem Scr 25:283–294

    CAS  Google Scholar 

  • Borgkarlson AK, Bergstrom G, Kullenberg B (1987) Chemical basis for the relationship between Ophrys orchids and their pollinators, 2. Volatile compounds of O. insectifera and O. speculum as insect mimetic attractants/excitants. Chem Scr 27:303–311

    CAS  Google Scholar 

  • Bowles S, Hammerstein P (2003) Does market theory apply to biology? In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 153–165

    Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Article  Google Scholar 

  • Bronstein JL, Wilson WG, Morris WE (2003) Ecological dynamics of mutualist/antagonist communities. Am Nat 162:S24–S39

    Article  PubMed  Google Scholar 

  • Brouat C, McKey D, Bessiere JM, Pascal L, Hossaert-McKey M (2000) Leaf volatile compounds and the distribution of ant patrolling in an ant–plant protection mutualism: Preliminary results on Leonardoxa (Fabaceae: Caesalpinioideae) and Petalomyrmex (Formicidae: Formicinae). Acta Oecol Int J Ecol 21:349–357

    Article  Google Scholar 

  • Brown JH (1983) Interaction and coevolution—Thompson, JN. Science 220:1043

    Article  Google Scholar 

  • Bruce MJ, Herberstein ME, Elgar MA (2001) Signalling conflict between prey and predator attraction. J Evol Biol 14:786–794

    Article  Google Scholar 

  • Bull JJ, Rice WR (1991) Distinguishing mechanisms for the evolution of cooperation. J Theor Biol 149:63–74

    PubMed  CAS  Google Scholar 

  • Caley MJ, Schluter D (2003) Predators favour mimicry in a tropical reef fish. Proc R Soc Lond B 270:667–672

    Article  Google Scholar 

  • Christy JH (1995) Mimicry, mate choice, and the sensory trap hypothesis. Am Nat 146:171–181

    Article  Google Scholar 

  • Christy JH, Backwell PRY, Schober U (2003a) Interspecific attractiveness of structures built by courting male fiddler crabs: experimental evidence of a sensory trap. Behav Ecol Sociobiol 53:84–91

    Google Scholar 

  • Christy JH, Baum JK, Backwell PRY (2003b) Attractiveness of sand hoods built by courting male fiddler crabs, Uca musica: test of a sensory trap hypothesis. Anim Behav 66:89–94

    Article  Google Scholar 

  • Connor RC (1986) Pseudo-reciprocity-investing in mutualism. Anim Behav 34:1562–1566

    Article  Google Scholar 

  • Craig CL, Bernard GD (1990) Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 71:616–623

    Article  Google Scholar 

  • Cresswell W (1994) Song as a pursuit-deterrent signal, and its occurrence relative to other anti-predation behaviors of skylark (Alauda arvensis) on attack by merlins (Falco columbarius). Behav Ecol Sociobiol 34:217–223

    Google Scholar 

  • Cushman JH, Rashbrook VK, Beattie AJ (1994) Assessing benefits to both participants in a lycaenid–ant association. Ecology 75:1031–1041

    Article  Google Scholar 

  • Davidson DW (1988) Ecological-studies of Neotropical ant gardens. Ecology 69:1138–1152

    Article  Google Scholar 

  • Davidson DW, Seidel JL, Epstein WW (1990) Neotropical ant gardens, 2. Bioassays of seed compounds. J Chem Ecol 16:2993–3013

    Article  CAS  Google Scholar 

  • DeVries PJ (1990) Enhancement of symbioses between butterfly caterpillars and ants by vibrational communication. Science 248:1104–1106

    Article  Google Scholar 

  • DeVries PJ, Cocroft RB, Thomas J (1993) Comparison of acoustical signals in Maculinea butterfly caterpillars and their obligate host Myrmica ants. Biol J Linn Soc 49:229–238

    Article  Google Scholar 

  • Doebeli M, Knowlton N (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci USA 95:8676–8680

    Article  PubMed  CAS  Google Scholar 

  • Duffield GE, Gibson RC, Gilhooly PM, Hesse AJ, Inkley CR, Gilbert FS, Barnard CJ (1993) Choice of flowers by foraging honey-bees (Apis mellifera)—possible morphological cues. Ecol Entomol 18:191–197

    Google Scholar 

  • Edwards DP, Hassall M, Sutherland WJ, Yu DW (2006) Selection for protection in an ant–plant mutualism: host sanctions, host modularity, and the principal-agent game. Proc R Soc Lond B 273:595–602

    Google Scholar 

  • Edwards DP, Arauco R, Hassall M, Sutherland WJ, Chamberlain K, Wadhams LJ, Yu DW (2007) Protection in an ant–plant mutualism: an adaptation or a sensory trap? Anim Behav (in press)

  • Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420

    Article  Google Scholar 

  • Endler JA, Houde AE (1995) Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution 49:456–468

    Article  Google Scholar 

  • Fitzgibbon CD, Fanshawe JH (1988) Stotting in Thomson gazelles—an honest signal of condition. Behav Ecol Sociobiol 23:69–74

    Article  Google Scholar 

  • Floate KD, Whitham TG (1994) Aphid–ant interaction reduces chrysomelid herbivory in a cottonwood hybrid zone. Oecologia 97:215–221

    Article  Google Scholar 

  • Frank SA (1994) Genetics of mutualism: the evolution of altruism between species. J Theor Biol 170:393–400

    Article  PubMed  CAS  Google Scholar 

  • Frank SA (1996) Host–symbiont conflict over the mixing of symbiotic lineages. Proc R Soc Lond B 263:339–344

    Article  CAS  Google Scholar 

  • Frank SA (2003) Repression of competition and the evolution of cooperation. Evolution 57:693–705

    PubMed  Google Scholar 

  • Ghazoul J (2001) Can floral repellents pre-empt potential ant–plant conflicts? Ecol Lett 4:295–299

    Article  Google Scholar 

  • Gibernau M, Hossaert-McKey M, Frey J, Kjellberg F (1998) Are olfactory signals sufficient to attract fig pollinators? Ecoscience 5:306–311

    Google Scholar 

  • Golding YC, Edmunds M (2000) Behavioural mimicry of honeybees (Apis mellifera) by droneflies (Diptera: Syrphidae: Eristalis spp.). Proc R Soc Lond B 267:903–909

    Article  CAS  Google Scholar 

  • Gonzalez A, Rowe CL, Weeks PJ, Whittle D, Gilbert FS, Barnard CJ (1995) Flower choice by honey-bees (Apis mellifera L)—sex phase of flowers and preferences among nectar and pollen foragers. Oecologia 101:258–264

    Article  Google Scholar 

  • Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546

    PubMed  CAS  Google Scholar 

  • Grafen A, Godfray HCJ (1991) Vicarious selection explains some paradoxes in dioecious fig pollinator systems. Proc R Soc Lond B 245:73–76

    Article  Google Scholar 

  • Grether GF (2000) Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (Poecilia reticulata). Evolution 54:1712–1724

    PubMed  CAS  Google Scholar 

  • Grison-Pigé L, Bessiere JM, Turlings TCJ, Kjellberg F, Roy J, Hossaert-McKey MM (2001) Limited intersex mimicry of floral odour in Ficus carica. Funct Ecol 15:551–558

    Article  Google Scholar 

  • Hamilton WD, Brown SP (2001) Autumn tree colours as a handicap signal. Proc R Soc Lond B 268:1489–1493

    Article  CAS  Google Scholar 

  • Haynes KF, Yeargan KV (1999) Exploitation of intraspecific communication systems: illicit signalers and receivers. Ann Entomol Soc Am 92:960–970

    Google Scholar 

  • Henning SF (1983) Chemical communication between lycaenid larvae (Lepidoptera: Lycaenidae) and ants (Hymenoptera: Formicidae). J Entomol Soc South Afr 46:341–366

    Google Scholar 

  • Henning SF (1987) Chemical communication between lycaenid larvae (Lepidoptera: Lycaenidae) and ants (Hymenoptera: Formicidae). Metamorphosis 3:66–81

    Google Scholar 

  • Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  Google Scholar 

  • Hoch WA, Singsaas EL, McCown BH (2003) Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol 133:1296–1305

    Article  PubMed  CAS  Google Scholar 

  • Hochberg ME, Gomulkiewicz R, Holt RD, Thompson JN (2000) Weak sinks could cradle mutualistic symbioses—strong sources should harbour parasitic symbioses. J Evol Biol 13:213–222

    Article  Google Scholar 

  • Hoeksema JD, Kummel M (2003) Ecological persistence of the plant–mycorrhizal mutualism: a hypothesis from species coexistence theory. Am Nat 162:S40–S50

    Article  PubMed  Google Scholar 

  • Houde AE (1987) Mate choice based upon naturally-occurring color-pattern variation in a guppy population. Evolution 41:1–10

    Article  Google Scholar 

  • Hughes L, Westoby M (1992) Capitula on stick insect eggs and elaiosomes on seeds—convergent adaptations for burial by ants. Funct Ecol 6:642–648

    Article  Google Scholar 

  • Ito F, Higashi S (1991) An indirect mutualism between oaks and wood ants via aphids. J Anim Ecol 60:463–470

    Article  Google Scholar 

  • Jackson RR, Wilcox RS (1990) Aggressive mimicry, prey-specific predatory behavior and predator-recognition in the predator–prey interactions of Portia fimbriata and Euryattus sp, jumping spiders from Queensland. Behav Ecol Sociobiol 26:111–119

    Article  Google Scholar 

  • Johnson SD (1994) Evidence for Batesian mimicry in a butterfly-pollinated orchid. Biol J Linn Soc 53:91–104

    Article  Google Scholar 

  • Johnson SD (2000) Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behaviour. Biol J Linn Soc 71:119–132

    Article  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeldt SE (1978) Ant–gardens: the interaction of Codonanthe crassifolia (Gesneriaceae) and Crematogaster longispina (Formicidae). Ecology 59:449–456

    Article  Google Scholar 

  • Laiolo P, Tella JL, Carrete M, Serrano D, Lopez G (2004) Distress calls may honestly signal bird quality to predators. Proc R Soc Lond B 271:S513–S515

    Article  Google Scholar 

  • Leal M (1999) Honest signalling during prey–predator interactions in the lizard Anolis cristatellus. Anim Behav 58:521–526

    Article  Google Scholar 

  • Lloyd JE (1986) Firefly communication and deception: “Oh, what a tangled web.” In: Mitchell RW, Thompson NS (eds) Deception: perspectives on human and nonhuman deceit. SUNY, Albany, NY, pp 113–128

    Google Scholar 

  • Messina FJ (1981) Plant protection as a consequence of an ant–membracid mutualism—interactions on goldenrod (Solidago sp). Ecology 62:1433–1440

    Article  Google Scholar 

  • Möller AP (1995) Bumblebee preference for symmetrical flowers. Proc Natl Acad Sci USA 92:2288–2292

    Article  PubMed  Google Scholar 

  • Moore JC, Hatcher MJ, Dunn AM, Compton SG (2003) Fig choice by the pollinator of a gynodioecious fig: selection to rush, or intersexual mimicry? Oikos 101:180–186

    Article  Google Scholar 

  • Morris WF, Bronstein JL, Wilson WG (2003) Three-way coexistence in obligate mutualist–exploiter interactions: The potential role of competition. Am Nat 161:860–875

    Article  PubMed  Google Scholar 

  • Nishida R, Baker TC, Roelofs WL (1982) Hairpencil pheromone components of male Oriental fruit moths, Grapholitha molesta (Lepidoptera: Tortricidae). J Chem Ecol 8:947–959

    Article  CAS  Google Scholar 

  • Nishida R, Fukami H, Baker TC, Roelofs WL, Acree TE (1985) Oriental fruit moth pheromone: attraction of females by an herbal essence. In: Acree TE, Soderlund DM (eds) Semiochemistry, flavours and pheromones. de Gruyter, Berlin, pp 47–60

    Google Scholar 

  • Noë R, Hammerstein P (1994) Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol 35:1–11

    Google Scholar 

  • Nowak MA, Bonhoeffer S, May RM (1994) Spatial games and the maintenance of cooperation. Proc Natl Acad Sci USA 91:4877–4881

    Article  PubMed  CAS  Google Scholar 

  • Payne RB (1982) Species limits in the indigobirds (Ploceidae, Vidua) of west Africa: mouth mimicry, song mimicry, and description of new species. Misc Publ Univ Mich Mus Zool 162:1–96

    Google Scholar 

  • Payne RB, Payne LL (1994) Song mimicry and species associations of west African indigobirds Vidua with quail-finch Ortygospiza atricollis, goldbreast Amandava subflava and brown twinspot Clytospiza monteiri. Ibis 136:291–304

    Google Scholar 

  • Pellmyr O, Huth CJ (1994) Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260

    Article  CAS  Google Scholar 

  • Pfennig DW, Harcombe WR, Pfennig KS (2001) Frequency-dependent batesian mimicry—predators avoid look-alikes of venomous snakes only when the real thing is around. Nature 410:323

    Article  PubMed  CAS  Google Scholar 

  • Pierce NE, Mead PS (1981) Parasitoids as selective agents in the symbiosis between lycaenid butterfly larvae and ants. Science 211:1185–1187

    Article  Google Scholar 

  • Pierce NE, Kitching RL, Buckley RC, Taylor MFJ, Benbow KF (1987) The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behav Ecol Sociobiol 21:237–248

    Article  Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    Article  PubMed  CAS  Google Scholar 

  • Proctor HC (1991) Courtship in the water mite Neumania papillator—males capitalize on female adaptations for predation. Anim Behav 42:589–598

    Article  Google Scholar 

  • Proctor HC (1992) Sensory exploitation and the evolution of male mating-behavior—a cladistic test using water mites (Acari, Parasitengona). Anim Behav 44:745–752

    Article  Google Scholar 

  • Raine NE, Willmer P, Stone GN (2002) Spatial structuring and floral avoidance behavior prevent ant–pollinator conflict in a Mexican ant-acacia. Ecology 83:3086–3096

    Google Scholar 

  • Reznick D, Butler MJ, Rodd H (2001) Life-history evolution in guppies, VII. The comparative ecology of high-and low-predation environments. Am Nat 157:126–140

    Article  Google Scholar 

  • Rodd FH, Hughes KA, Grether GF, Baril CT (2002) A possible non-sexual origin of mate preference: are male guppies mimicking fruit? Proc R Soc Lond B 269:475–481

    Article  Google Scholar 

  • Ryan MJ (1990) Sexual selection, sensory system and sensory exploitation. Oxf Surv Evol Biol 7:157–195

    Google Scholar 

  • Ryan MJ, Rand AS (1993) Sexual selection and signal evolution—the ghost of biases past. Philos Trans R Soc Lond B 340:187–195

    Article  Google Scholar 

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    Article  PubMed  Google Scholar 

  • Schaefer HM, Schaefer V, Levey DJ (2004) How plant–animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584

    Article  Google Scholar 

  • Schiestl FP (2004) Floral evolution and pollinator mate choice in a sexually deceptive orchid. J Evol Biol 17:67–75

    Article  PubMed  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Lofstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  CAS  Google Scholar 

  • Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: Biological markets as a model of mutualisms. Ecology 79:1029–1038

    Google Scholar 

  • Seidel JL, Epstein WW, Davidson DW (1990) Neotropical ant gardens, I. Chemical constituents. J Chem Ecol 16:1791–1816

    Article  CAS  Google Scholar 

  • Shapiro JM, Addicott JF (2003) Regulation of moth–yucca mutualisms: mortality of eggs in oviposition-induced ‘damage zones.’ Ecol Lett 6:440–447

    Article  Google Scholar 

  • Sherratt TN, Roberts G (2001) The importance of phenotypic defectors in stabilizing reciprocal altruism. Behav Ecol 12:313–317

    Article  Google Scholar 

  • Simms EL, Taylor DL, Povich J, Shefferson RP, Sachs JL, Urbina M, Tausczik Y (2006) An empirical test of partner choice mechanisms in a wild legume–rhizobium interaction. Proc R Soc Lond B 273:77–81

    Article  Google Scholar 

  • Stalhandske P (2002) Nuptial gifts of male spiders function as sensory traps. Proc R Soc Lond B 269:905–908

    Article  Google Scholar 

  • Stanton ML, Palmer TM, Young TP (2002) Competition–colonization trade-offs in a guild of African Acacia-ants. Ecol Monogr 72:347–363

    Google Scholar 

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson S, Angjoy A (2002) Rotting smell of dead-horse arum florets. Nature 425:625–626

    Article  CAS  Google Scholar 

  • Stowe MK, Tumlinson JH, Heath RR (1987) Chemical mimicry—Bolas spiders emit components of moth prey species sex-pheromones. Science 236:964–967

    Article  CAS  Google Scholar 

  • Thompson JN (1982) Interaction and coevolution. Wiley, New York

    Google Scholar 

  • Totland O, Matthews I (1998) Determinants of pollinator activity and flower preference in the early spring blooming Crocus vernus. Acta Oecol 19:155–165

    Article  Google Scholar 

  • Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly–ant mutualism. Anim Behav 60:13–26

    Article  Google Scholar 

  • Tso IM (1996) Stabilimentum of the garden spider Argiope trifasciata: a possible prey attractant. Anim Behav 52:183–191

    Article  Google Scholar 

  • Tso IM (1998) Isolated spider web stabilimentum attracts insects. Behaviour 135:311–319

    Google Scholar 

  • van Baalen M, Jansen VAA (2001) Dangerous liaisons: the ecology of private interest and common good. Oikos 95:211–224

    Article  Google Scholar 

  • Vega-Redondo F, Hasson O (1993) A game-theoretic model of predator–prey signaling. J Theor Biol 162:309–319

    Article  Google Scholar 

  • Weiblen GD, Yu DW, West SA (2001) Pollination and parasitism in functionally dioecious figs. Proc R Soc Lond B 268:651–659

    Article  CAS  Google Scholar 

  • West SA, Kiers ET, Pen I, Denison RF (2002a) Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J Evol Biol 15:830–837

    Article  Google Scholar 

  • West SA, Kiers ET, Simms EL, Denison RF (2002b) Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc R Soc Lond B 269:685–694

    Article  Google Scholar 

  • West-Eberhard MJ (1984) Sexual selection, competitive communication and species-specific signals in insects. In: Lewis T (ed) Insect communication. Academic, New York, pp 283–324

    Google Scholar 

  • Wilkinson DM, Sherratt TN (2001) Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos 92:377–384

    Article  Google Scholar 

  • Wilkinson DM, Sherratt TN, Phillip DM, Wratten SD, Dixon AFG, Young AJ (2002) The adaptive significance of autumn leaf colours. Oikos 99:402–407

    Article  Google Scholar 

  • Willmer PG, Stone GN (1997) How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388:165–167

    Article  CAS  Google Scholar 

  • Yachi S (1995) How can honest signalling evolve? The role of handicap principle. Proc R Soc Lond B 262:283–288

    Article  Google Scholar 

  • Yamamura N (1993) Vertical transmission and evolution of mutualism from parasitism. Theor Popul Biol 44:95–109

    Article  Google Scholar 

  • Yeargan KV (1988) Ecology of a Bolas spider, Mastophora hutchinsoni—phenology, hunting tactics, and evidence for aggressive chemical mimicry. Oecologia 74:524–530

    Article  Google Scholar 

  • Yu DW (1994) The structural role of epiphytes in ant gardens. Biotropica 26:222–226

    Article  Google Scholar 

  • Yu DW (2001) Parasites of mutualisms. Biol J Linn Soc 72:529–546

    Article  Google Scholar 

  • Yu DW, Davidson DW (1997) Experimental studies of species-specificity in Cecropia–ant relationships. Ecol Monogr 67:273–294

    Google Scholar 

  • Yu DW, Wilson HB, Pierce NE (2001) An empirical model of species coexistence in a spatially structured environment. Ecology 82:1761–1771

    Google Scholar 

  • Yu DW, Wilson HB, Frederickson ME, Palomino W, De la Colina R, Edwards DP, Balareso AA (2004) Experimental demonstration of species coexistence enabled by dispersal limitation. J Anim Ecol 73:1102–1114

    Article  Google Scholar 

  • Zahavi A (1975) Mate selection—selection for a handicap. J Theor Biol 53:205–214

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A, Zahavi A (1997) The handicap principle: a missing piece of Darwin’s puzzle. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgment

We thank Doyle McKey, Mark Hassall, and William Sutherland for the comments, and the National Environmental Research Council (NERC) for a studentship awarded to D.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Edwards.

Additional information

Communicated by A. Cockburn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, D.P., Yu, D.W. The roles of sensory traps in the origin, maintenance, and breakdown of mutualism. Behav Ecol Sociobiol 61, 1321–1327 (2007). https://doi.org/10.1007/s00265-007-0369-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-007-0369-3

Keywords

Navigation