Skip to main content
Log in

Males vs workers: testing the assumptions of the haploid susceptibility hypothesis in bumblebees

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The haploid state of males in eusocial Hymenoptera—the ants, bees, and wasps—has been proposed as a driving force in the evolution of social behavior under the assumption that haploidy results in higher susceptibility to pathogens. In this study, we present the first test of the assumptions of the “haploid male susceptibility hypothesis”. We challenged males and workers of the bumblebee Bombus terrestris with its parasite Crithidia bombi but found no differences in either initial susceptibility or the intensity of infection between haploid males and diploid females. We reviewed observational studies on parasitism in haplodiploid insects and found that in 15 out of 26 cases, haploid males had lower parasite prevalence. However, the majority of available data related to nontransmissible parasites and thus any general statements about haploid susceptibility remain unclear. Using a simulation model, we studied how diverse genetic mechanisms could affect the values for resistance; results suggest that only a phenomenon that renders workers effectively haploid, e.g., imprinting, could explain our experimental results. A more likely explanation is that, in eusocial Hymenoptera with predominantly female populations, parasites may simply become more adapted to the more common female hosts and, thus, male haploid susceptibility may be hidden due to parasite adaptation. Our results do not support the idea that the haploid susceptibility hypothesis explains the origin or maintenance of social systems in the eusocial Hymenoptera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baer B (2003) Bumblebees as model organisms to study male sexual selection in social insects. Behav Ecol Sociobiol 54:521–533. DOI 10.1007/s00265-003-0673-5

    Article  Google Scholar 

  • Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154

    Article  CAS  Google Scholar 

  • Baer B, Schmid-Hempel P (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55:139–1643

    Google Scholar 

  • Baer B, Schmid-Hempel P (2003) Bumble bee workers from different sire groups vary in susceptibility to parasite infection. Ecol Lett 6:106–110

    Article  Google Scholar 

  • Beukeboom LW (1995) Sex determination in Hymenoptera: a need for genetic and molecular studies. Bioessays 17:813–816

    Article  PubMed  CAS  Google Scholar 

  • Bongiorni S, Prantera G (2003) Imprinted facultative heterochromatization in mealybugs. Genetica 117:271–279

    Article  PubMed  CAS  Google Scholar 

  • Brown MJF, Loosli R, Schmid-Hempel P (2000) Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91:421–427

    Article  Google Scholar 

  • Brown MJF, Schmid-Hempel R, Schmid-Hempel P (2003a) Strong context-dependent virulence in a host–parasite system: reconciling genetic evidence with theory. J Anim Ecol 72:102–994

    Article  Google Scholar 

  • Brown MJF, Moret Y, Schmid-Hempel P (2003b) Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology 126:253–260. DOI 10.1017/S0031182002002755

    Article  PubMed  CAS  Google Scholar 

  • Brown MJF, Schmid-Hempel R, Schmid-Hempel P (2003c) Queen-controlled sex ratios and worker-reproduction in the bumble bee Bombus hypnorum, as revealed by microsatellites. Mol Ecol 12:1599–1605

    Article  PubMed  CAS  Google Scholar 

  • Camacho JPM, Bakkali M, Corral JM, Cabrero J, López-León MD, Aranda I, Martín-Alganza A, Perfectti F (2002) Host recombination is dependent on the degree of parasitism. Proc R Soc Lond B 269:2173–2177. DOI 10.1098/rspb.2002.2135

    Article  CAS  Google Scholar 

  • Charlesworth B (1996) The evolution of chromosomal sex determination and dosage compensation. Curr Biol 6:149–162

    Article  PubMed  CAS  Google Scholar 

  • Dobson SL, Tanouye MA (1998) Evidence for a Genomic Imprinting Sex determination Mechanism in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Genetics 149:233–242

    PubMed  CAS  Google Scholar 

  • Doums C, Moret Y, Benelli E, Schmid-Hempel P (2002) Senescence of immune defence in Bombus workers. Ecol Entomol 27:138–144

    Article  Google Scholar 

  • Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc Lond B 258:299–302

    Article  Google Scholar 

  • Fischer O, Schmid-Hempel P (2005) Selection by parasites may increase host recombination frequency. Biol Lett 1:193–195. DOI 10.1098/rsbl.2005.0296.

    Article  PubMed  CAS  Google Scholar 

  • Gerloff CU, Ottmer BK, Schmid-Hempel P (2003) Effects of inbreeding on immune response and body size in a social insect, Bombus terrestris. Funct Ecol 17:582–589

    Article  Google Scholar 

  • Gorbunov PS (1987) Endoparasitic flagellates of the genus Crithidia (Trypanosomatidae, Zoomastigophorea) from alimentary canal of bumblebees. Zool Zhurnal 66:1775–1780

    Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87:3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple test of significance. Biometrika 75:800–802

    Article  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Hughes DP, Moya-Raygoza G, Kathirithamby J (2003) The first record among Dolichoderinae (Formicidae) of parasitism by Strepsiptera. Insectes Soc 50:148–150. DOI 10.1007/s00040-003-0637-9

    Article  Google Scholar 

  • Hughes WOH, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc Lond B 269:1811–1819

    Article  Google Scholar 

  • Imhoof B, Schmid-Hempel P (1998a) Patterns of adaptation of a protozoan parasite to its bumblebee host. Oikos 82:59–65

    Article  Google Scholar 

  • Imhoof B, Schmid-Hempel P (1998b) Single-clone and mixed-clone infections versus host environment in Crithidia bombi infecting bumblebees. Parasitology 117:331–336

    Article  PubMed  Google Scholar 

  • Kerr WE (1997) Sex determination in honey bees (Apinae and Meliponinae) and its consequences. Braz J Genet 20. ISSN 0100-8455

  • Kover PX, Caicedo L (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 10:1–16

    Article  PubMed  CAS  Google Scholar 

  • Liersch S, Schmid-Hempel P (1998) Genetic variation within social insect colonies reduces parasite load. Proc R Soc Lond B 265:221–225

    Article  Google Scholar 

  • Lively CM, Craddok C, Vrijenhoek RC (1990) Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature 344:864–866

    Article  Google Scholar 

  • Lloyd V (2000) Parental imprinting in Drosophila. Genetica 109:35–44

    Article  PubMed  CAS  Google Scholar 

  • Logan A, Ruiz-González MX, Brown MJF (2005) The impact of host starvation on parasite development and population dynamics in an intestinal trypanosome parasite of bumble bees. Parasitology 130:637–642. DOI 10.1017/S0031182005007304

    Article  PubMed  CAS  Google Scholar 

  • Mable BK, Otto SP (1998) The evolution of life cycles with haploid and diploid phases. Bioessays 20:453–462

    Article  Google Scholar 

  • Mallon EB, Schmid-Hempel P (2004) Behavioural interactions, kin and disease susceptibility in the bumblebee Bombus terrestris. J Evol Biol. DOI 10.1111/j.1420–9101.2004.00717.x

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168

    Article  PubMed  CAS  Google Scholar 

  • Moret Y, Schmid-Hempel P (2001) Immune defence in bumble-bee offspring. Nature 414:506

    Article  PubMed  CAS  Google Scholar 

  • Nuismer SL, Otto SP (2004) Host–parasite interactions and the evolution of ploidy. Proc Natl Acad Sci USA 101:11036–11039. DOI 10.1073/pnas.0403151101

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell S, Beshers SN (2004) The role of male disease susceptibility in the evolution of haplodiploid insect societies. Proc R Soc Lond B 271:979–983. DOI 10.1098/rspb.2004.2685

    Article  Google Scholar 

  • Otterstatter MC (2004) Patterns of parasitism among conopid flies parasitizing bumblebees. Entomol Exp Appl 111:133–139

    Article  Google Scholar 

  • Otterstatter MC, Whidden TL (2004) Patterns of parasitism by tracheal mites (Locustacarus buchneri) in natural bumble bee populations. Apidologie 35:351–357

    Article  Google Scholar 

  • Otterstatter MC, Whidden TL, Owen RE (2002) Contrasting frequencies of parasitism and host mortality among phorid and conopid parasitoids of bumble-bees. Ecol Entomol 27:229–237

    Article  Google Scholar 

  • Otto SP, Michalakis Y (1998) The evolution of recombination in changing environments. Trends Ecol Evol 13:145–151

    Article  Google Scholar 

  • Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 99:11260–11264. DOI 10.1073/pnas.162006499

    Article  PubMed  CAS  Google Scholar 

  • Pie MR, Rosengaus RB, Calleri DV II, Traniello JFA (2005) Density and disease resistance in group-living insects: do eusocial species exhibit density-dependent prophylaxis? Ethol Ecol Evol 17:41–50

    Article  Google Scholar 

  • Queller DC (2003) Theory of genomic imprinting conflict in social insects. BMC Evol Biol 3:15

    Article  PubMed  Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134

    Article  Google Scholar 

  • Santillán-Galicia MT, Otero-Colina G, Romero-Vera C, Cibrián-Tovar J (2002) Varroa destructor (Acar: Varroidae) infestation in queen, worker, and drone brood of Apis mellifera (Hymenoptera: Apidae). Can Entomol 134:381–390

    Article  Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Schmid-Hempel P (2001) On the evolutionary ecology of host–parasite interactions: addressing the question with regard to bumblebees and their parasites. Naturwissenchaften 88:147–158

    Article  CAS  Google Scholar 

  • Schmid-Hempel P, Heeb D (1991) Worker mortality and colony development in bumblebees, Bombus lucorum (L.) (Hymenoptera, Apidae). Mitt Schweiz Entomol Ges 64:93–108

    Google Scholar 

  • Schmid-Hempel P, Loosli R (1998) A contribution to the knowledge of Nosema infections in bumble bees, Bombus sp. Apidologie 29:525–535

    Article  Google Scholar 

  • Schmid-Hempel P, Müller C, Schmid-Hempel R, Shykoff JA (1990) Frequency and ecological correlates of parasitism by conopid flies (Conopiae. Diptera) in populations of bumblebees. Insectes Soc 37:14–30

    Article  Google Scholar 

  • Schmid-Hempel P, Puhr K, Kruger N, Reber C, Schmid-Hempel R (1999) Dynamic and genetic consequence of variation in horizontal transmission for a microparasitic infection. Evolution 53:426–434

    Article  Google Scholar 

  • Schmid-Hempel P, Reber Funk C (2004) The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris. Parasitology 129:147–158. DOI 10.1017/S0031182004005542

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Hempel P, Schmid-Hempel R (1993) Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behav Ecol Sociobiol 33:319–327

    Article  Google Scholar 

  • Sheridan LAD, Poulin R, Ward DF, Zuk M (2000) Sex differences in parasitic infections among arthropod host: is there a male bias? Oikos 88:327–334

    Article  Google Scholar 

  • Shykoff JA, Schmid-Hempel P (1991a) Incidence and effect of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22:117–125

    Article  Google Scholar 

  • Shykoff JA, Schmid-Hempel P (1991b) Genetic relatedness and eusociality: parasite-mediated selection on the genetic composition of groups. Behav Ecol Sociobiol 28:371–376

    Article  Google Scholar 

  • Shykoff JA, Schmid-Hempel P (1991c) Parasites delay worker reproduction in bumblebees: consequences for eusociality. Behav Ecol 2:242–248

    Article  Google Scholar 

  • Shykoff JA, Schmid-Hempel P (1991d) Parasites and the advantage of genetic variability within social insect colonies. Proc R Soc Lond B 243:55–58

    Article  Google Scholar 

  • Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc Lond B 270:99–103. DOI 10.1098/rspb/2002.2199

    Article  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Wilfert L, Gadau J, Baer B, Schmid-Hempel P (2004) Population genomics and host–parasite interactions: investigating the evolution of resistance and host immunity in Bombus terrestris. In: Rigaud T, Ebert D (eds) Evolutionary ecology of host–parasite relationships. Conférence Jacques–Monod, p 59

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rejane M. Falcao, Ailish M. Flanagan, and Peter Stafford for their help in the laboratory and technical support. This work was supported by a Basic Research Grant from Enterprise Ireland SC/2002/209 to MJFB. This work complied with the laws governing animal research in Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario X. Ruiz-González.

Additional information

J. Traniello

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-González, M.X., Brown, M.J.F. Males vs workers: testing the assumptions of the haploid susceptibility hypothesis in bumblebees. Behav Ecol Sociobiol 60, 501–509 (2006). https://doi.org/10.1007/s00265-006-0192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-006-0192-2

Keywords

Navigation