Skip to main content
Log in

Effect of water temperature on the courtship behavior of the Alpine newt Triturus alpestris

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Temperature is expected to have an effect on the behavioral patterns of all organisms, especially ectotherms. However, although several studies focused on the effect of temperature on acoustic displays in both insects and anurans, almost nothing is known about how environmental temperature may affect ectotherm visual courtship displays and sexual performance. The purpose of this study was to determine the effect of environmental temperature on the sexual behavior of Alpine newts (Triturus alpestris). We subjected T. alpestris to two different temperatures in controlled laboratory conditions. Temperature had a major effect on both male and female behaviors: at low temperature, the frequencies of several displays, including tail-raising during sperm deposition, are lowered. This variation is caused indirectly by temperature because it is due to female responsiveness, which is temperature-dependent. However, the fanning movement of the male’s tail during its main courtship display is independent of female behavior: at lower temperatures, the tail beats at a lower rate, but for a longer time. The similar reproductive success (i.e. sperm transfer) at the two temperature ranges indicates that breeding in cold water is not costly but instead allows males and females to mate early in the season. This is particularly adaptive because, in many habitats, the reproductive period is shortened by drying or freezing conditions, which may impair survival of branchiate offspring. This study also demonstrates the necessity of considering environmental parameters when modeling optimality and characteristics of ectotherm behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahnesjo I (1994) Temperature affects male and female potential reproductive rates differently in the sex-role reversed pipefish, Syngnathus typhle. Behav Ecol 6:229–233

    Google Scholar 

  • Arntzen JW, Sparreboom M (1989) A phylogeny for the old world newts, genus Triturus: biochemical and behavioral data. J Zool Lond 219:645–664

    Google Scholar 

  • Cogalniceanu D (1994) The relative importance of vision and olfaction in mate recognition in male newts (Genus Triturus). Herpetologica 50:344–349

    Google Scholar 

  • Connaughton MA, Fine ML, Taylor MH (2002) Weakfish sonic muscle: influence of size, temperature and season. J Exp Biol 205:2183–2188

    Google Scholar 

  • Davenport J (1992) Animal life at low temperature. Chapman & Hall, London

  • Denoël M (1996) Etude comparée du comportement de cour de Triturus alpestris alpestris (Laurenti, 1768) et Triturus alpestris cyreni (Wolterstorff, 1932) (Amphibia, Caudata) : approche évolutive. Cah Ethol 16:133–258

    Google Scholar 

  • Denoël M (1998) The modulation of movement as a behavioral adaptation to extreme environments in the newt Triturus alpestris cyreni. J Herpetol 32:623–625

    Google Scholar 

  • Denoël M (1999) Le comportement social des urodèles. Cah Ethol 19:221–258

    Google Scholar 

  • Denoël M (2002) Paedomorphosis in the Alpine newt (Triturus alpestris): decoupling behavioural and morphological change. Behav Ecol Sociobiol 52:394–399

    Google Scholar 

  • Denoël M (2003) Effect of rival males on the courtship of paedomorphic and metamorphic Triturus alpestris. Copeia 2003:618–623

    Google Scholar 

  • Denoël M, Andreone F (2003) Trophic habits and aquatic microhabitat use in gilled immature, paedomorphic and metamorphic Alpine newts (Triturus alpestris apuanus) in a pond in central Italy. Belg J Zool 133:95–102

    Google Scholar 

  • Denoël M, Joly P (2001a) Adaptive significance of facultative paedomorphosis in Triturus alpestris (Amphibia, Caudata): resource partitioning in an alpine lake. Freshwater Biol 46:1387–1396

    Google Scholar 

  • Denoël M, Joly P (2001b) Size-related predation reduces intramorph competition in paedomorphic Alpine newts. Can J Zool 79:943–948

    Google Scholar 

  • Denoël M, Poncin P, Ruwet JC (2001a) Sexual compatibility between two heterochronic morphs in the Alpine newt, Triturus alpestris. Anim Behav 62:559–566

    Google Scholar 

  • Denoël M, Poncin P, Ruwet JC (2001b) Alternative mating tactics in the Alpine newt Triturus alpestris alpestris. J Herpetol 35:62–67

    Google Scholar 

  • Dunbar RIM (1982) Intraspecific variations in mating strategy. In: Bateson PPG, Klopfer PH (eds) Perspectives in ethology, vol 5. Plenum, New York, pp 385–431

  • Endler JA (1995) Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol Evol 10:22–29

    Google Scholar 

  • Garner TWJ, Schmidt BR (2003) Relatedness, body size and paternity in the alpine newt, Triturus alpestris. Proc R Soc Lond Ser B Biol Sci 270:619–624

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. The University of Chicago Press, Chicago

  • Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98

    Article  Google Scholar 

  • Halliday TR (1977) The courtship of European newts: an evolutionary perspective. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Plenum, New York, pp 185–232

  • Hirano M, Rome LC (1984) Jumping performance of frogs (Rana pipiens) as a function of muscle temperature. J Exp Biol 108:429–439

    Google Scholar 

  • Houck LD, Arnold SJ (2003) Courtship and mating behavior. In: Sever DM (ed) Reproductive biology and phylogeny of Urodela. Science, Enfield, N.H., pp 383–424

  • Howard RD, Young JR (1998) Individual variation in male vocal traits and female mating preferences in Bufo americanus. Anim Behav 55:1165–1179

    Google Scholar 

  • Hutchinson VH, Dupré RK (1992) Thermoregulation. In: Feder ME, Burggren WW (eds) Environmental physiology of the Amphibians. The University of Chicago Press, Chicago, pp 206–249

  • John-Alder HB, Barnhart MC, Bennett AF (1989) Thermal sensitivity of swimming performance and muscle contraction in northern and southern populations of tree frogs (Hyla crucifer). J Exp Biol 142:357–372

    Google Scholar 

  • Kikuyama S, Toyoda F, Ohmiya Y, Matsuda K, Tanaka S, Hayashi H (1995) Sodefrin: a female-attracting peptide pheromone in newt cloacal glands. Science 267:1643–1645

    Google Scholar 

  • Kissner KJ, Forbes MR (1997) Rattling behavior of prairie rattlesnakes (Crotalus viridis viridis, Viperidae) in relation to sex, reproductive status, body size, and body temperature. Ethology 103:1042–1050

    Google Scholar 

  • Kvarnemo C (1994) Temperature differentially affects male and female reproductive rates in the sand goby: consequences for operational sex ratio. Proc R Soc Lond B 256:151–156

    Google Scholar 

  • Kvarnemo C (1996) Temperature affects operational sex ratio and intensity of male-male competition: an experimental study of sand gobies, Pomatoschistus minutus. Behav Ecol 7:208–212

    Google Scholar 

  • Kvarnemo C (1998) Temperature modulates competitive behaviour: why sand goby males fight more in warmer water. Ethol Ecol Evol 10:105–114

    Google Scholar 

  • Kvarnemo C, Ahnesjö I (1996) The dynamics of operational sex ratios and competition for mates. Trends Ecol Evol 11:404–408

    Google Scholar 

  • Lass S, Spaak P (2003) Temperature effects on chemical signalling in a predator-prey system. Freshwater Biol 48:669–677

    Google Scholar 

  • Mori A, Burghardt GM (2001) Temperature effects on anti-predator behaviour in Rhabdophis tigrinus, a snake with toxic nuchal glands. Ethology 107:795–811

    Google Scholar 

  • Navas CA, Bevier CR (2001) Thermal dependency of calling performance in the eurythermic frog Colostethus subpunctatus. Herpetologica 57:384–395

    Google Scholar 

  • Newman RA (1992) Adaptive plasticity in amphibian metamorphosis. Bioscience 42:671–678

    Google Scholar 

  • Noldus (2002) The observer. Reference manual version 4.1. Noldus Information Technology, Wageningen

  • Rafinska A (1991) Reproductive biology of the fire-bellied toads, Bombina bombina and B. variegata (Anura: Discoglossidae): egg size, clutch size and larval period length differences. Biol J Linn Soc 43:197–210

    Google Scholar 

  • Rafinski J, Osikowski A (2002) Sperm mixing in the Alpine newt (Triturus alpestris). Can J Zool 80:1293–1298

    Google Scholar 

  • Rome LC, Stevens ED, John-Adler HB (1992) The influence of temperature and thermal acclimation on physiological function. In: Feder ME, Burggren WW (eds) Environmental physiology of the Amphibians. The University of Chicago Press, Chicago, pp 183–205

  • Ruano F, Tinaut A, Soler JJ (1999) High surface temperatures select for individual foraging in ants. Behav Ecol 11:396–404

    Google Scholar 

  • Ryan TJ, Plague GR (2004) Hatching asynchrony, survival, and the fitness of alternative adult morphs in Ambystoma talpoideum. Oecologia 140:46–51

    Google Scholar 

  • Schabetsberger R (1993) Der Bergmolch (Triturus alpestris, Laurenti) als Endkonsument in einem alpinen Karstsee (Dreibrüdersee, 1643 m, Totes Gebirge). PhD Thesis, University of Salzburg

  • Shine R, Olsson MM, Lemadter MP, Moore IT, Mason RT (2000) Effects of sex, body size, temperature, and location on the antipredator tactics of free-ranging gartersnakes (Thamnophis sirtalis, Colubridae). Behav Ecol 11:239–245

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York

  • Sueur J, Sanborn AF (2003) Ambient temperature and sound power of cicada calling songs (Hemiptera: Cicadae: Tibicina). Physiol Entomol 28:340–343

    Google Scholar 

  • Sullivan BK, Malmos KB (1994) Call variation in the Colorado river toad (Bufo alvarius): behavioral and phylogenetic implications. Herpetologica 50:146–156

    Google Scholar 

  • Teyssedre C, Halliday T (1986) Cumulative effect of male’s displays in the sexual behaviour of the smooth newt Triturus vulgaris (Urodela, Salamandridae). Ethology 71:89–102

    Google Scholar 

  • Vasara E, Sofianidou TS, Schneider H (1991) Bioaccoustic analysis of the yellow-bellied toad in Northern Greece (Bombina variegata scabra L., Anura, Discoglossidae). Zool Anz 226:220–236

    Google Scholar 

  • Verrell PA (1986) Male discrimination of larger, more fecund females in the smooth newt, Triturus vulgaris. J Herpetol 20:416–422

    Google Scholar 

  • Verrell PA (1988) Sexual interference in the Alpine newt, Triturus alpestris (Amphibia, Urodela, Salamandridae). Zool Sci 5:159–164

    Google Scholar 

  • von Lindeiner A (1992) Untersuchungen zur Populationsökologie von Berg-, Faden- und Teichmolch (Triturus alpestris L., T. helveticus Razoumowski, T. vulgaris L.) an ausgewählten Gewässern im Naturpark Schönbuch (Tübingen). Jahrb Feldherpetol 3:1–117

    Google Scholar 

  • Walker TJ (2000) Pulse rates in the songs of trilling field crickets (Orthoptera: Gryllidae: Gryllus). Ann Entomol Soc Am 93:565–572

    Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Ecol Syst 27:97–117

    Google Scholar 

  • Wells KD, Taigen TL, O’Brien JA (1996) The effect of temperature on calling energetics of the spring peeper (Pseudacris crucifer). Amphib Reptil 17:149–158

    Google Scholar 

  • Whitehead PJ, Puckridge JT, Leigh CM, Seymour RS (1989) Effect of temperature on jump performance of the frog Limnodynastes tasmaniensis. Physiol Zool 62:937–949

    Google Scholar 

  • Wong BBM, Cowling ANN, Cunningham RB, Donnelly CF, Cooper PD (2004) Do temperature and social environment interact to affect call rate in frogs (Crinia signifera)? Aust Ecol 29:209–214

    Google Scholar 

Download references

Acknowledgements

We thank B. Burnside, W. Cooper and three anonymous reviewers for their constructive comments on the manuscript. Collecting permit was provided by the Ministère de la Région Wallonne (Division de la Nature et des Forêts). M. Denoël is a post-doctoral researcher at the Fonds National de la Recherche Scientifique (FNRS). This study benefitted from FNRS grants 1.5.011.03 and 1.5.120.04 (Crédit aux chercheurs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Denoël.

Additional information

Communicated by W. Cooper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denoël, M., Mathieu, M. & Poncin, P. Effect of water temperature on the courtship behavior of the Alpine newt Triturus alpestris. Behav Ecol Sociobiol 58, 121–127 (2005). https://doi.org/10.1007/s00265-005-0924-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-005-0924-8

Keywords

Navigation