Skip to main content
Log in

Optimal patch time allocation for time-limited foragers

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The Charnov Marginal Value Theorem (MVT) predicts the optimal foraging duration of animals exploiting patches of resources. The predictions of this model have been verified for various animal species. However, the model is based on several assumptions that are likely too simplistic. One of these assumptions is that animals are living forever (i.e., infinite horizon). Using a simple dynamic programming model, we tested the importance of this assumption by analysing the optimal strategy for time-limited foragers. We found that, for time-limited foragers, optimal patch residence times should be greater than those predicted from the classic, static MVT, and the deviation should increase when foragers are approaching the end of their life. These predictions were verified for females of the parasitoid Anaphes victus (Hymenoptera: Mymaridae) exploiting egg patches of its host, the carrot weevil Listronotus oregonensis (Coleoptera: Curculionidae). As predicted by the model, females indeed remained for a longer time on host patches when they approached the end of their life. Experimental results were finally analysed with a Cox regression model to identify the patch-leaving decision rules females used to behave according to the model’s predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernstein C, Kacelnik A, Krebs JR (1988) Individual decisions and the distribution of predators in a patchy environment. J Anim Ecol 57:1007–1026

    Article  Google Scholar 

  • Bernstein C, Kacelnik A, Krebs JR (1991) Individual decisions and the distribution of predators in a patchy environment. II. The influence of travel costs and structure of the environment. J Anim Ecol 60:205–225

    Article  Google Scholar 

  • Boivin G (1988) Laboratory rearing of Anaphes sordidatus (Girault) (Hymenoptera: Mymaridae) on carrot weevil eggs (Coleoptera: Curculionidae). Entomophaga 33:131–134

    Article  Google Scholar 

  • Boivin G (1999) Integrated management for carrot weevil. Integr Pest Manag Rev 4:21–37

    Article  Google Scholar 

  • Boivin G, van Baaren J (2000) The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol Lett 3:469–474

    Article  Google Scholar 

  • Boivin G, Fauvergue X, Wajnberg E (2004) Optimal patch residence time in egg parasitoids: innate versus learned estimate of patch quality. Oecologia 138:640–647

    Article  PubMed  Google Scholar 

  • Bonser B, Wright PJ, Bament S, Chukwu UO (1998) Optimal patch use by foraging workers of Lasius fuliginosus, L. niger and Myrmica ruginodis. Ecol Entomol 23:15–21

    Article  Google Scholar 

  • Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47

    Article  Google Scholar 

  • Bulmer M (1994) Theoretical evolutionary ecology. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Clark CW, Mangel M (2000) Dynamic state variable models in ecology. Methods and applications. Oxford University Press, New York

    Google Scholar 

  • Collett D (1994) Modelling survival data in medical research. Chapman & Hall, London

    Google Scholar 

  • Cook RM, Hubbard SF (1977) Adaptive searching strategies in insect parasites. J Anim Ecol 46:115–125

    Article  Google Scholar 

  • Cox DR (1972) Regression models and life tables. J R Stat Soc B 74:187–220

    Google Scholar 

  • Cox DR (1975) Partial likelihood. Biometrika 62:269–276

    Article  Google Scholar 

  • Driessen G, Bernstein C (1999) Patch departure mechanisms and optimal host exploitation in an insect parasitoid. J Anim Ecol 68:445–459

    Article  Google Scholar 

  • Driessen G, Bernstein C, van Alphen JJM, Kacelnik A (1995) A count-down mechanism for host search in the parasitoid Venturia canescens. J Anim Ecol 64:117–125

    Article  Google Scholar 

  • Fletcher JP, Hughes JP, Harvey IF (1994) Life expectancy and egg load affect oviposition decisions of a solitary parasitoid. Proc R Soc Lond 258:163–167

    Article  CAS  Google Scholar 

  • Giraldeau LA (1997) The ecology of information use. In: Krebs JR, Davies NB (eds) Behavioural ecology, 4th edn. Blackwell, Oxford, pp 42–68

    Google Scholar 

  • Gladstein DS, Carlin NF, Austad SN (1991) The need for sensitivity analyses of dynamic optimization models. Oikos 60:121–126

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids. Behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Green RF (1980) Bayesian birds: a simple example of Oaten’s stochastic model of optimal foraging. Theor Popul Biol 18:244–256

    Article  Google Scholar 

  • Green RF (1984) Stopping rules for optimal foragers. Am Nat 123:30–40

    Article  Google Scholar 

  • Haccou P, de Vlas SJ, van Alphen JJM, Visser ME (1991) Information processing by foragers: effects of intra-patch experience on the leaving tendency of Leptopilina heterotoma. J Anim Ecol 60:93–106

    Article  Google Scholar 

  • Haccou P, Sjerps M, van der Meijden E (1999) To leave or to stay, that is the question: prediction from models of patch-leaving strategies. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Oxford, pp 85–108

    Google Scholar 

  • Hassell MP (1978) The dynamics of arthropod predator–prey systems. Princeton University Press, Princeton

    Google Scholar 

  • Henneman ML (1998) Maximization of host encounters by parasitoids foraging in the field: females can use a simple rule. Oecologia 116:467–474

    Article  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Houston AI (1987) The control of foraging decisions. In: Commons ML, Kacelnik A, Shettleworth SJ (eds) Quantitative analysis of behavior, vol IV. Erlbaum, Mahwah, pp 41–61

    Google Scholar 

  • Houston AI, Clark CW, McNamara JM, Mangel M (1988) Dynamic models in behavioral and evolutionary ecology. Nature 332:29–34

    Article  Google Scholar 

  • Houston AI, Welton NJ, McNamara JM (1997) Acquisition and maintenance costs in the long-term regulation of avian fat reserves. Oikos 78:331–340

    Article  Google Scholar 

  • Hubbard SF, Cook RM (1978) Optimal foraging by parasitoid wasps. J Anim Ecol 47:593–604

    Article  Google Scholar 

  • Hutchinson JMC, McNamara JM (2000) Ways to test stochastic dynamic programming models empirically. Anim Behav 59:665–676

    Article  PubMed  Google Scholar 

  • Iwasa Y, Higashi M, Yamamura N (1981) Prey distribution as a factor determining the choice of optimal foraging strategy. Am Nat 117:710–723

    Article  Google Scholar 

  • Keasar T, Ney-Nifle M, Mangel M, Swezey S (2001) Early oviposition experience affects patch residence time in a foraging parasitoid. Entomol Exp Appl 98:123–132

    Article  Google Scholar 

  • Krebs JR, Kacelnik A, Taylor P (1978) Test of optimal sampling by foraging great tits. Nature 275:27–31

    Article  Google Scholar 

  • Li C, Roitberg BD, Mackauer M (1993) Patch residence time and parasitism of Aphelinus asychis: a simulation model. Ecol Model 69:227–241

    Article  Google Scholar 

  • Mangel M (1993) Motivation, learning, and motivated learning. In: Papaj DR, Lewis AC (eds) Insect learning. Ecological and evolutionary perspectives. Chapman & Hall, London, pp 158–173

    Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • McNair JM (1982) Optimal giving-up time and the marginal value theorem. Am Nat 119:511–529

    Article  Google Scholar 

  • McNamara JM (1982) Optimal patch use in a stochastic environment. Theor Popul Biol 21:269–288

    Article  Google Scholar 

  • McNamara JM, Houston AI (1985) Optimal foraging and learning. J Theor Biol 117:231–249

    Article  Google Scholar 

  • McNamara JM, Houston AI (1986) The common currency for behavioural decisions. Am Nat 127:358–378

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987a) Memory and the efficient use of information. J Theor Biol 125:285–395

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987b) Foraging in patches: there’s more to life than the Marginal Value Theorem. In: Commons ML, Kacelnik A, Shettleworth SJ (eds) Quantitative analysis of behavior, vol IV. Erlbaum, Mahwah, pp 23–39

    Google Scholar 

  • Newman JA (1991) Patch use under predation hazard: foraging behavior in a simple stochastic environment. Oikos 61:29–44

    Article  Google Scholar 

  • Nonacs P (2001) State dependent behavior and the Marginal Value Theorem. Behav Ecol 12:71–83

    Google Scholar 

  • Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor Popul Biol 12:263–285

    Article  PubMed  CAS  Google Scholar 

  • Ollason JG (1980) Learning to forage—optimally? Theor Popul Biol 18:44–56

    Article  PubMed  CAS  Google Scholar 

  • Olsson O, Holmgren NMA (1998) The survival-rate-maximizing policy for Bayesian foragers: wait for good news. Behav Ecol 9:345–353

    Article  Google Scholar 

  • Picard C, Auclair JL, Boivin G (1991) Response to host age of the egg parasitoid Anaphes n.sp. (Hymenoptera: Mymaridae). Biocontrol Sci Technol 1:169–176

    Article  Google Scholar 

  • Roitberg BD, Mangel M, Lalonde RG, Roitberg CA, van Alphen JJM, Vet L (1992) Seasonal dynamic shifts in patch exploitation by parasitic wasps. Behav Ecol 3:156–165

    Article  Google Scholar 

  • Roitberg BD, Sircom J, Roitberg CA, van Alphen JJM, Mangel M (1993) Life expectancy and reproduction. Nature 364:108

    Article  PubMed  CAS  Google Scholar 

  • Rosenheim JA, Mangel M (1994) Patch-leaving rules for parasitoids with imperfect host discrimination. Ecol Entomol 19:374–380

    Google Scholar 

  • Rosenheim JA, Rosen D (1991) Foraging and oviposition decisions in the parasitoid Aphytis lignanensis: distinguishing the influences of egg load and experience. J Anim Ecol 60:373–389

    Article  Google Scholar 

  • Sjerps M, Haccou P (1994) Effect of competition on optimal patch leaving: a war of attrition. Theor Popul Biol 46:300–318

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Tenhumberg B, Keller MA, Possingham HP (2001) Using Cox’s proportional hazards models to implement optimal strategies: an example from behavioural ecology. Math Comput Model 33:597–607

    Article  Google Scholar 

  • Thiel A, Hoffmeister TS (2004) Knowing your habitat: linking patch-encounter rate and patch exploitation in parasitoids. Behav Ecol 15:419–425

    Article  Google Scholar 

  • van Alphen JJM (1988) Patch-time allocation by insect parasitoids: superparasitism and aggregation. In: de Jong G (ed) Population genetics and evolution. Springer, Berlin Heidelberg New York, pp 216–221

    Google Scholar 

  • van Alphen JJM, Bernstein C, Driessen G (2003) Information acquisition and time allocation in insect parasitoids. Trends Ecol Evol 18:81–87

    Article  Google Scholar 

  • van Baaren J, Boivin G (1998a) Genotypic and kin discrimination in a solitary hymenopterous parasitoid: implications for speciation. Evol Ecol 12:523–534

    Article  Google Scholar 

  • van Baaren J, Boivin G (1998b) Learning affects host discrimination behavior in a parasitoid wasp. Behav Ecol Sociobiol 42:9–16

    Article  Google Scholar 

  • van Baaren J, Boivin G, Nénon JP (1994) Intra- and interspecific host discrimination in two closely related egg parasitoids. Oecologia 100:325–330

    Article  Google Scholar 

  • Venables WN, Ripley BD (1994) Modern applied statistics with S-Plus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Visser ME, van Alphen JJM, Nell HW (1992) Adaptive superparasitism and patch time allocation in solitary parasitoids: the influence of pre-patch experience. Behav Ecol Sociobiol 31:163–171

    Article  Google Scholar 

  • Waage JK (1979) Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens. J Anim Ecol 48:353–371

    Article  Google Scholar 

  • Wajnberg E, Rosi MC, Colazza S (1999) Genetic variation in patch-time allocation in a parasitic wasp. J Anim Ecol 68:121–133

    Article  Google Scholar 

  • Wajnberg E, Fauvergue X, Pons O (2000) Patch leaving decision rules and the Marginal Value Theorem: an experimental analysis and a simulation model. Behav Ecol 11:577–586

    Article  Google Scholar 

  • Wajnberg E, Gonsard PA, Tabone E, Curty C, Lezcano N, Colazza S (2003) A comparative analysis of patch-leaving decision rules in a parasitoid family. J Anim Ecol 72:618–626

    Article  Google Scholar 

  • Wajnberg E, Curty C, Colazza S (2004) Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: consequences in terms of patch-time allocation. J Anim Ecol 73:1179–1189

    Article  Google Scholar 

  • Ward JF, Austin RM, MacDonald DW (2000) A simulation model of foraging behaviour and the effect of predation risk. J Anim Ecol 69:16–30

    Article  Google Scholar 

  • Yamada Y (1988) Optimal use of patches by parasitoids with a limited fecundity. Res Popul Ecol 30:235–249

    Article  Google Scholar 

  • Yamamura N, Tsuji N (1987) Optimal patch time under exploitative competition. Am Nat 129:553–567

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grants from the Natural Sciences and Engineering Research Council (NSERC) to G. Boivin. J. Vaillancourt is thanked for her technical assistance. T.S. Hoffmeister, R.H. Messing, E. Mondor, P. Nonacs, J.S. Pierre and B.D. Roitberg are thanked for their comments on an earlier version of the manuscript. This work is part of GDR 2155 ‘Ecologie Comportementale’ [Centre National de la Recherche Scientifique (CNRS) commission 29] and the European Science Foundation (ESF)/Behavioural Ecology of Insect Parasitoids (BEPAR) scientific programme. All the experimental procedures conformed to French and Canadian law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Wajnberg.

Additional information

Communicated by H. Kokko

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wajnberg, E., Bernhard, P., Hamelin, F. et al. Optimal patch time allocation for time-limited foragers. Behav Ecol Sociobiol 60, 1–10 (2006). https://doi.org/10.1007/s00265-005-0131-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-005-0131-7

Keywords

Navigation