Skip to main content
Log in

Malaria infection and host behavior: a comparative study of Neotropical primates

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Parasites are ubiquitous in populations of free-ranging animals and impact host fitness, but virtually nothing is known about the factors that influence patterns of disease risk across species and the effectiveness of behavioral defenses to reduce this risk. We investigated the correlates of malaria infection (prevalence) in Neotropical primates using data from the literature, focusing on host traits involving group size, body mass, and sleeping behavior. Malaria is spread to these monkeys through anopheline mosquitoes that search for hosts at night using olfactory cues. In comparative tests that used two different phylogenetic trees, we confirmed that malaria prevalence increases with group size in Neotropical primates, as suggested by a previous non-phylogenetic analysis. These results are consistent with the hypothesis that larger groups experience increased risk of attack by mosquitoes, and counter to the hypothesis that primates benefit from the encounter-dilution effect of avoiding actively-seeking insects by living in larger groups. In contrast to non-phylogenetic tests, body mass was significant in fewer phylogeny-based analyses, and primarily when group size was included as a covariate. We also found statistical support for the hypothesis that sleeping in closed microhabitats, such as tree holes or tangles of vegetation, reduces the risk of malaria infection by containing the host cues used by mosquitoes to locate hosts. Due to the small number of evolutionary transitions in sleeping behavior in this group of primates, however, this result is considered preliminary until repeated with a larger sample size. In summary, risk of infection with malaria and other vector-borne diseases are likely to act as a cost of living in groups, rather than a benefit, and sleeping site selection may provide benefits by reducing rates of attack by malaria vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Alexander RD (1974) The evolution of social behavior. Ann Rev Ecol Syst 5:325–383

    Article  Google Scholar 

  • Anderson JR (1984) Ethology and ecology of sleep in monkeys and apes. Adv Study Behav 14:165–229

    Google Scholar 

  • Anderson JR (1998) Sleep, sleeping sites, and sleep–related activities: awakening to their significance. Am J Primatol 46:63–75

    Article  PubMed  CAS  Google Scholar 

  • Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson AP, Ezenwa V, Pedersen AB, Poss M, Pulliam JRC (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Ann Rev Ecol Evol Syst 34:517–47

    Article  Google Scholar 

  • Blumstein DT, Evans CS, Daniel JC (1999) An experimental study of behavioural group size effects in tammar wallabies, Macropus eugenii. Anim Behav 58:351–360

    Article  PubMed  Google Scholar 

  • Bock G, Cardew G (1996) Olfaction in mosquito–host interactions. In: Ciba Foundation symposium. Wiley, Chichester, New York.

    Google Scholar 

  • Brown CR, Brown MB (1986) Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecology 67:1206–1218

    Article  Google Scholar 

  • Brown CR, Sethi RA (2002) Mosquito abundance is correlated with cliff swallow (Petrochelidon pyrrhonota) colony size. J Med Entomol 39:115–120

    PubMed  Google Scholar 

  • Brown CR, Komar N, Quick SB, Sethi RA, Panella NA, Brown MB, Pfeffer M (2001) Arbovirus infection increases with group size. Proc Roy Soc Lond B 268:1833–1840

    Article  CAS  Google Scholar 

  • Coatney GR, Collins WE, McWilson W (1971) The primate malarias. National Insitiute of Allergy and Infectious Diseases, Bethesda.

    Google Scholar 

  • Cochrane AH, Matsumoto Y, Kamboj KK, Maracic M, Nussenzweig RS, Aikawa M (1988) Membrane–associated antigens of blood stages of Plasmodium brasilianum, a quartan malaria parasite. Infec Immunity 56:2080–2088

    CAS  Google Scholar 

  • Coimbra-Filho AF (1977) Natural shelters of Leontopithecus rosalia and some ecological implications (Callitrichidae: Primates). In: Kleiman D (ed) The biology and conservation of the Callitrichidae. Smithsonian Institution Press, Washington, pp 79–89

    Google Scholar 

  • Coimbra–Filho AF, Mittermeier R (1981) Ecology and behavior of neotropical primates 1. Academia Brasileira de Ciencias, Rio de Janeiro.

    Google Scholar 

  • Collins WE (1994) The owl monkey as a model for malaria. In: Baer JF, Weller RE, Kakoma I (eds) Aotus: The owl monkey. Academic Press, San Diego, CA, pp 217–244

    Google Scholar 

  • Côté IM, Poulin R (1995) Parasitism and group size in social animals: a meta-analysis. Behav Ecol 6:159–165

    Google Scholar 

  • Davies CR, Ayres JM, Dye C, Deane LM (1991) Malaria infection rate of Amazonian primates increases with body weight and group size. Funct Ecol 5:655–662

    Article  Google Scholar 

  • Day JF, Edman JD (1984) Mosquito engorgement on normally defensive hosts depends on host activity patterns. J Med Entomol 21:732–740

    PubMed  CAS  Google Scholar 

  • de Arruda M, Nardin EH, Nussenzweig RS, Cochrane AH (1989) Sero-epidemiological studies of malaria in Indian tribes and monkeys of the Amazon Basin of Brazil. Am J Trop Med Hyg 41:379–385

    PubMed  CAS  Google Scholar 

  • Deane LM, Ferreira Neto JA, Okumura M, Ferreira MO (1969) Malaria parasites of Brazilian monkeys. Rev Inst Med Trop Sao Paulo 11:71–86

    PubMed  CAS  Google Scholar 

  • Deane LM (1992) Simian malaria in Brazil. Mem Inst Oswaldo Cruz 87:1–20

    PubMed  Google Scholar 

  • Di Bitetti MS, Vidal EML, Baldovino MC, Benesovsky V (2000) Sleeping site preferences in tufted capuchin monkeys (Cebus apella nigritus). Am J Primatol 50:257–274

    Article  PubMed  CAS  Google Scholar 

  • Dudley R, Milton K (1990) Parasite deterrence and the energetic costs of slapping in howler monkeys, Alouatta palliata. J Mammal 71:463–465

    Article  Google Scholar 

  • Edman JD (1988) Disease control through manipulation of vector-host interaction: some historical and evolutionary perspectives. In: Scott TW, Grumstrup-Scott J (eds) Proceedings of a symposium: the role of vector-host interactions in disease transmission, vol 68 Entomological Society of America, Lanham, MD, pp 43–50

    Google Scholar 

  • Edman JD, Day JF, Walker ED (1984) Field confirmation of laboratory observations on the differential antimosquito behavior of herons. Condor 86:91–92

    Article  Google Scholar 

  • Ewald PW (1983) Host-parasite relations, vectors, and the evolution of disease severity. Ann Rev Ecol Syst 14:465–485

    Article  Google Scholar 

  • Fandeur T, Volney B, Peneau C, De Thoisy B (2000) Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum/P. malariae malaria. Parasitology 120:11–21

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Freeland WJ (1977) Blood-sucking flies and primate polyspecific associations. Nature 269:801–802

    Article  PubMed  CAS  Google Scholar 

  • Garcia J, Braza F (1987) Activity rhythms and use of space of a group of Aotus azarae in Bolivia during the rainy season. Primates 28:337–342

    Article  Google Scholar 

  • Garnham PCC (1966) Malaria parasites and other Haemosporidia. Blackwell Scientific, Oxford.

    Google Scholar 

  • Gillies MT (1955) The Density of adult anopheles in the neighbourhood of an East African village. Am J Trop Med Hyg 4:1103–1113

    PubMed  CAS  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylog Evol 9:585–598

    Article  CAS  Google Scholar 

  • Haddow AJ (1942) The mosquito fauna and climate of native huts at Kisumu, Kenya. Bull Entomol Res 33:91–142

    Google Scholar 

  • Hallem EA, Fox AN, Zwiebel LJ, Carlson JR (2004) Olfaction-mosquito receptor for human-sweat odorant. Nature 427:212–213

    Article  PubMed  CAS  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hawkey CM (1977) The haematology of exotic mammals. In: Archer RK, Jeffcott LB, Lehmann H (eds) Comparative clinical haematology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Heymann EW (1995) Sleeping habits of tamarins, Saguinus mystax and Saguinus fuscicollis (Mammalia: Primates; Callitrichidae), in north-eastern Peru. J Zool Lond 237:211–226

    Google Scholar 

  • Heymann EW (2001) Malaria infection rate of Amazonian primates: the role of sleeping habits. Folia Primatol 72:153

    Article  Google Scholar 

  • Hoare DJ, Couzin ID, Godin JGJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67:155–164

    Article  Google Scholar 

  • Izawa K (1979) Studies on peculiar distribution pattern of Callimico. Kyoto University Overseas Research Reports of New World Monkeys 1:1–19

    Google Scholar 

  • Janson CH (1988) Food competition in brown capuchin monkeys (Cebus apella): quantitative effects of group size and tree productivity. Behaviour 105:53–76

    Article  Google Scholar 

  • Kappeler PM (1998) Nests, tree holes and the evolution of primate life histories. Am J Primatol 46:7–33

    Article  PubMed  CAS  Google Scholar 

  • Kinzey WG (1981) The titi monkeys, genus Callicebus. In: Coimbra-Filho A, Mittermeier R (eds) Ecology and behavior of Neotropical primates. Academia Brasileira de Ciencias, Rio de Janeiro, pp 241–276

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Lourenço de Oliveira R, Luz SLB (1996) Simian malaria at two sites in the Brazilian Amazon. 2. vertical distribution and frequency of anopheline species inside and outside the forest. Mem Inst Oswaldo Cruz 91:687–694

    PubMed  Google Scholar 

  • Mittermeier RA, Rylands AB, Coimbra-Filho AF, Fonseca GAB (1988) Ecology and behavior of Neotropical primates 2. World Wildlife Fund, Washington

    Google Scholar 

  • Møller AP, Dufva R, Allander K (1993) Parasites and the evolution of host social behavior. Adv Study Behav 22:65–102

    Google Scholar 

  • Mooring MS, Hart BL (1992) Animal grouping for protection from parasites: Selfish herd and encounter-dilution effects. Behaviour 123:173–193

    Article  Google Scholar 

  • Nunn CL (2002) A comparative study of leukocyte counts and disease risk in primates. Evolution 56:177–190

    PubMed  Google Scholar 

  • Nunn CL, Gittleman JL, Antonovics J (2000) Promiscuity and the primate immune system. Science 290:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Pålsson K, Jaenson TGT, Dias F, Laugen T, Bjorkman A (2004) Endophilic Anopheles mosquitoes in Guinea Bissau, West Africa, in relation to human housing conditions. J Med Entomol 41:746–752

    Article  PubMed  Google Scholar 

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405

    Article  PubMed  CAS  Google Scholar 

  • Peres CA (1991) Ecology of mixed-species groups of tamarins in Amazonian terra firme forests. Ph.D. thesis, University of Cambridge

  • Petraitis PS, Dunham AE, Niewlarowski PH (1996) Inferring multiple causality: the limitations of path analysis. Funct Ecol 10:421–431

    Article  Google Scholar 

  • Port GR, Boreham PFL, Bryan JH (1980) The relationship of host size to feeding by mosquitos of the Anopheles gambiae Giles complex (Diptera, Culicidae). Bull Entomol Res 70:133–144

    Article  Google Scholar 

  • Porter CA, Page SL, Czelusniak J, Schneider H, Schneider MPC, SAmpaio I, Goodman M (1997) Phylogeny and evolution of selected primates as determined by sequences of the epsilon-globin locus and 5' flanking regions. Int J Primatol 18:261–295

    Article  Google Scholar 

  • Purvis A (1995) A composite estimate of primate phylogeny. Phil Tran Roy Soc Lond B 348:405–421

    Article  CAS  Google Scholar 

  • Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comp Applic Biosci 11:247–251

    CAS  Google Scholar 

  • Reeve J, Abouheif E (2003) Phylogenetic Independence. 2.0 edn. McGill University, Montreal

    Google Scholar 

  • Ribbands CR (1949) Studies on the attractiveness of human populations to anophelines. Bull Entomol Res 40:227–238

    PubMed  CAS  Google Scholar 

  • Rice WR, Gaines SD (1994) Heads I win, tails you lose - testing directional alternative hypotheses in ecological and evolutionary research. Trends Ecol Evol 9:235–237

    Article  Google Scholar 

  • Rubiopalis Y, Curtis CF (1992) Biting and resting behavior of anophelines in western Venezuela and implications for control of malaria transmission. Med Vet Entomol 6:325–334

    Article  PubMed  CAS  Google Scholar 

  • Rylands AB (1981) Preliminary field observations on the marmoset, Callithrix humeralifer intermedius (Hershkovitz, 1977), at Dardanelos, Rio Aripuana, Mato Grosso. Primates 22:46–59

    Article  Google Scholar 

  • Schneider H (2000) The current status of the New World monkey phylogeny. Anais Da Academia Brasileira De Ciencias 72:165–172

    PubMed  CAS  Google Scholar 

  • Smith AC (1997) Comparative ecology of saddleback (Saguinus fuscicollis) and moustached (Saguinus mystax) tamarins. Thesis, University of Reading

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    Article  PubMed  CAS  Google Scholar 

  • Soini P (1988) The pygmy marmoset, Cebuella. In: Mittermeier RA, Rylands AB, Coimbra-Filho AF, Fonseca GAB (eds), vol 2. World Wildlife Fund, Washington, pp 79–129

  • Stevenson MF, Rylands AB (1988) The marmosets, genus Callithrix. In: Mittermeier RA, Coimbra-Filho AF, da Fonseca GAB (eds) Ecology and behavior of Neotropical primates, vol 2. World Wildlife Fund, Washington, DC, pp 131–222

    Google Scholar 

  • Taliaferro WH, Taliaferro LG (1934) Morphology, periodicity and course of infection in Panamanian monkeys. Am J Hyg 20:2–49

    Google Scholar 

  • Tella JL (2002) The evolutionary transition to coloniality promotes higher blood parasitism in birds. J Evol Biol 15:32–41

    Article  Google Scholar 

  • Valderrama X, Robinson JG, Attygalle AB, Eisner T (2000) Seasonal anointment with millipedes in a wild primate: A chemical defense against insects? J Chem Ecol 26:2781–2790

    Article  CAS  Google Scholar 

  • Voorham J (2002) Intra–population plasticity of Anopheles darlingi's (Diptera, Culicidae) biting activity patterns in the state of Amapa, Brazil. Revista De Saude Publica 36:75–80

    PubMed  Google Scholar 

  • Webber LA, Edman JD (1972) Anti-mosquito behavior of ciconiiform birds. Anim Behav 20:228–232

    Article  Google Scholar 

Download references

Acknowledgments

We thank V. Ezenwa, P. M. Kappeler, C. Brown and three anonymous reviewers for helpful suggestions. This project was supported through funding from the NSF (Grant #DEB-0212096 to CN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Nunn.

Additional information

Communicated by C. Brown

Electronic supplementary material

Tree 1

Phylogenetic tree of New World primates based on Purvis (1995), with taxonomic adjustment noted in the text. Numbers indicate branch length in Ma. This tree is referred to as Purvis in the Table 2.

Tree 2

Phylogenetic tree of New World primates based on Porter et al. (1997), Schneider (2000) and Goodman et al. (1998). This tree is referred to as PSG in Table 2. Numbers indicate branch length in Ma. In addition to branch length differences, which were based on information in the references, the major differences to the Purvis tree involve the position of Aotus, the internal arrangement of the marmosets (Callithrix, Cebuella, Mico), and arrangement of species in the clade containing Ateles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunn, C.L., Heymann, E.W. Malaria infection and host behavior: a comparative study of Neotropical primates. Behav Ecol Sociobiol 59, 30–37 (2005). https://doi.org/10.1007/s00265-005-0005-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-005-0005-z

Keywords

Navigation