Skip to main content
Log in

Inbreeding and local mate competition in the ant Cardiocondyla batesii

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The ant species Cardiocondyla batesii is unique in that, in contrast to all other ant species, both sexes are flightless. Female sexuals and wingless, ergatoid males mate in the nest in autumn and young queens disperse on foot to found their own colonies in spring. The close genetic relatedness between queens and their mates (rqm=0.76±SE 0.12) and the high inbreeding coefficient (F=0.55; 95%CI 0.45–0.65) suggest that 83% of all matings are between brothers and sisters. As expected from local mate competition theory, sex ratios were extremely female biased, with more than 85% of all sexuals produced being young queens. Despite the common occurrence of inbreeding, we could not detect any adult diploid males. Though the probability of not detecting multiple mating was relatively high, at least one-third of all queens in our sample had mated more than once. Multiple mating to some extent counteracts the effects of inbreeding on worker relatedness (rww=0.68±SE 0.05) and would also be beneficial through decreasing diploid male load, if sex was determined by a single locus complementary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander RD, Sherman PW (1977) Local mate competition and parental investment in social insects. Science 196:494–500

    Google Scholar 

  • Bekkevold D, Frydenberg J, Boomsma J (1999) Multiple mating and facultative polygyny in the Panamanian leafcutter ant Acromyrmex echinatior. Behav Ecol Sociobiol 46:103–109

    Article  Google Scholar 

  • Beukeboom LW, Ellers J, van Alphen JJM (2000) Absence of single-locus complementary sex determination in the braconid wasps Asobara tabida and Alysia manducator. Heredity 84:29–36

    Article  PubMed  Google Scholar 

  • Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in honeybee and encodes an SR-type protein. Cell 114:397–398

    Article  PubMed  Google Scholar 

  • Boomsma JJ (1989) Sex-investment ratios in ants: has female bias been systematically overestimated? Am Nat 133:517–532

    Article  Google Scholar 

  • Boomsma JJ, Grafen A (1990) Intraspecific variation in ant sex ratios and Trivers-Hare hypothesis. Evolution 44:1026–1034

    Google Scholar 

  • Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc Lond B 351:947–975

    Google Scholar 

  • Boomsma JJ, van der Have TM (1998) Queen mating and paternity variation in the ant Lasius niger. Mol Ecol 7:1709–1718

    Article  Google Scholar 

  • Boomsma JJ, Fjerdingstad EJ, Frydenberg J (1999) Multiple paternity, relatedness and genetic diversity in Acromyrmex leaf-cutter ants. Proc R Soc Lond B 266:249–254

    Article  Google Scholar 

  • Boomsma JJ, Baer B, Heinze J (2005) The evolution of male traits in social insects. Annu Rev Entomol (in press)

  • Bourke AFG (1989) Comparative analysis of sex-investment ratios in slave-making ants. Evolution 43:913–918

    Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

  • Bourke AFG, van der Have TM, Franks NR (1988) Sex ratio determination and worker reproduction in the slave-making ant Harpagoxenus sublaevis. Behav Ecol Evol 23:233–245

    Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ (1983) Evolution of sex determining mechanisms. Cummings, Menlo Park, Calif

  • Buschinger A (1989) Evolution, speciation and inbreeding in the parasitic ant genus Epimyrma (Hymenoptera, Formicidae). J Evol Biol 2:265–283

    Google Scholar 

  • Chakraborty R, De Andrade M, Daiger SP, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genet 56:45–57

    PubMed  Google Scholar 

  • Chapuisat M (1998) Mating frequency of ant queens with alternative dispersal strategies, as revealed by microsatellites analysis of sperm. Mol Ecol 7:1097–1105

    Article  Google Scholar 

  • Chapuisat M, Goudet J, Keller L (1997) Microsatellites reveal high population viscosity and limited dispersal in the ant Formica paralugubris. Evolution 51:475–482

    Google Scholar 

  • Cole BJ (1983) Multiple mating and the evolution of social behavior in the Hymenoptera. Behav Ecol Sociobiol 12:191–201

    Article  Google Scholar 

  • Cole BJ, Wiernasz DC (1997) Inbreeding in a lek-mating ant species, Pogonomyrmex occidentalis. Behav Ecol Sociobiol 40:79–86

    Article  Google Scholar 

  • Cole BJ, Wiernasz DC (1999) The selective advantage of low relatedness. Science 285:891–893

    Article  CAS  PubMed  Google Scholar 

  • Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435

    Google Scholar 

  • Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286

    Article  Google Scholar 

  • Cremer S, Heinze J (2002) Adaptive production of fighter males: queens of the ant Cardiocondyla adjust the sex ratio under local mate competition. Proc R Soc Lond B 269:417–422

    Article  PubMed  Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Oxford University Press, Oxford

  • De Menten L, Cremer S, Heinze J, Aron S (2005) Primary sex ratio adjustment by ant queens in response to local mate competition. Anim Behav (in press)

  • Dobson SL, Tanouye MA (1998) Evidence for a genomic imprinting sex determination mechanism in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Genetics 149:233–242

    CAS  PubMed  Google Scholar 

  • Foitzik S, Heinze J (2001) Microgeographic structure and intraspecific parasitism in the ant Leptothorax nylanderi. Ecol Entomol 26:449–456

    Article  Google Scholar 

  • Foitzik S, Herbers J (2001) Colony structure of a slavemaking ant. 1. Intracolony relatedness, worker reproduction, and polydomy. Evolution 55:307–315

    CAS  PubMed  Google Scholar 

  • Foitzik S, Haberl M, Gadau J, Heinze J (1997) Mating frequency of Leptothorax nylanderi ant queens determined by microsatellite analysis. Insectes Soc 44:219–227

    Article  Google Scholar 

  • Forel A (1894) Les formicides de la province d’Oran (Algérie). Bull Soc Vaudoise Sci Nat 30:1–45

    Google Scholar 

  • Frank SA (1987) Variable sex ratio among colonies of ants. Behav Ecol Sociobiol 20:195–201

    Article  Google Scholar 

  • Gadau J, Strehl CP, Oettler J, Hölldobler B (2003) Determinants of intracolonial relatedness in Pogonomyrmex rugosus (Hymenoptera; Formicidae), mating frequency and brood raids. Mol Ecol 12:1931–1938

    Article  CAS  PubMed  Google Scholar 

  • Gautschi B, Tenzer I, Müller JP, Schmid B (2000) Isolation and characterization of microsatellite loci in the bearded vulture (Gypaetus barbatus) and cross-amplification in three old world vulture species. Mol Ecol 9:2193–2195

    CAS  PubMed  Google Scholar 

  • Goodnight KF, Queller DC (1994) Relatedness 4.2. Goodnight Software, Houston, Tex

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    CAS  PubMed  Google Scholar 

  • Hammond RL, Bourke AFG, Bruford MW (2001) Mating frequency and mating system of the polygynous ant, Leptothorax acervorum. Mol Ecol 10:2719–2728

    Article  CAS  PubMed  Google Scholar 

  • Harris H, Hopkinson DA (1978) Handbook of enzyme electrophoresis in human genetics. Elsevier/North Holland, Amsterdam

  • Hasegawa E, Yamaguchi T (1995) Population structure, local mate competition, and sex-allocation pattern in the ant Messor aciculatus. Evolution 49:260–265

    Google Scholar 

  • Heinze J, Hölldobler B (1993) Fighting for a harem of queens: physiology of reproduction in Cardiocondyla male ants. Proc Natl Acad Sci USA 90:8412–8414

    CAS  PubMed  Google Scholar 

  • Heinze J, Keller L (2000) Alternative reproductive strategies: a queen perspective in ants. Trends Ecol Evol 15:508–512

    Article  PubMed  Google Scholar 

  • Heinze J, Ortius D (1991) Social organization of Leptothorax acervorum from Alaska (Hymenoptera, Formicidae). Psyche 98:227–240

    Google Scholar 

  • Heinze J, Tsuji K (1995) Ant reproductive strategies. Res Popul Ecol 37:135–149

    Google Scholar 

  • Heinze J, Kühnholz S, Schilder K, Hölldobler B (1993) Behavior of ergatoid males in the ant, Cardiocondyla nuda. Insectes Soc 40:273–282

    Google Scholar 

  • Heinze J, Hölldobler B, Yamauchi K (1998) Male competition in Cardiocondyla ants. Behav Ecol Sociobiol 42:239–246

    Article  Google Scholar 

  • Heinze J, Schrempf A, Seifert B, Tinaut A (2002) Queen morphology and dispersal tactics in the ant, Cardiocondyla batesii. Insectes Soc 49:129–132

    Article  Google Scholar 

  • Herre EA (1985) Sex ratio adjustment in fig wasps. Science 228:896–898

    Google Scholar 

  • Herre EA, West SA, Cook JM, Compton SG, Kjellberg F (1997) Fig-associated wasps: pollinators and parasites, sex-ratio adjustment and male polymorphism, population structure and its consequences. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 226–239

  • Hölldobler B, Bartz SH (1985) Sociobiology of reproduction in ants. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Fischer, Stuttgart, pp 237–257

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, Mass

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  Google Scholar 

  • Keller L, Reeve HK (1994) Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48:694–704

    Google Scholar 

  • King BH (1986) Sex ratio responses to other parasitoid wasps: multiple adaptive explanations. Behav Ecol Sociobiol 39:367–374

    Article  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic Data Analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php

  • Marikovsky PI, Yakushkin VT (1974) The ant Cardiocondyla uljanini Em, 1889 ant the systematic position of the “parasitic ant Xenometra”. Izv Akad Nauk Kaz SSR Ser Biol 3:57–62

    Google Scholar 

  • Moilanen A, Sundström L, Pedersen JS (2004) MATESOFT: a Program for deducing parental genotypes and estimating mating system statistics in haplodiploid species. Mol Ecol Notes (in press)

  • Morley DW (1954) The evolution of an insect society. Allen & Unwin, London

  • Nonacs P (1986) Sex-ratio determination within colonies of ants. Evolution 40:199–204

    Google Scholar 

  • Page RE, Metcalf RA (1982) Multiple mating, sperm utilization, and social evolution. Am Nat 119:263–281

    Article  Google Scholar 

  • Pamilo P (1985) Effect of inbreeding on genetic relatedness. Hereditas 103:195–200

    CAS  PubMed  Google Scholar 

  • Pamilo P (1993) Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70:472–480

    Google Scholar 

  • Pamilo P, Sundström L, Fortelius W, Rosengren R (1994) Diploid males and colony-level selection in Formica ants. Ethol Ecol Evol 6:211–235

    Google Scholar 

  • Passera L, Keller L (1994) Mate availability and male dispersal in the Argentine ant Linepithema humile (Mayr) (=Iridomyrmex humilis). Anim Behav 48:361–369

    Article  Google Scholar 

  • Pedersen JS, Boomsma JJ (1998) Direct genetic evidence for local mate competition in ants. Naturwissenschaften 85:593–595

    Article  CAS  Google Scholar 

  • Pedersen JS, Boomsma JJ (1999) Multiple paternity in social Hymenoptera: estimating the effective mate number in single-double mating populations. Mol Ecol 8:577–587

    Article  Google Scholar 

  • Peer K, Taborsky M (2004) Female ambrosia beetles adjust their offspring sex ratio according to outbreeding opportunities for their sons. J Evol Biol 17:257–264

    CAS  PubMed  Google Scholar 

  • Peeters CP, Crewe RM (1986) Male biology in the queenless ponerine ant Ophthalmopone berthoudi (Hymenoptera: Formicidae). Psyche 93:277–284

    Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Google Scholar 

  • Ross KG (1993) The breeding system of the fire ant Solenopsis invicta: effects on colony genetic structure. Am Nat 141:554–576

    Article  Google Scholar 

  • Ross KG, Fletcher DJC (1985) Comparative study of genetic and social structure in two forms of the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol 17:349–356

    Article  Google Scholar 

  • Ross KG, Fletcher DJC (1986) Diploid male production—a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol 19:283–291

    Article  Google Scholar 

  • Sherman PW, Seeley TD, Reeve HK (1988) Parasites, pathogens, and polyandry in social Hymenoptera. Am Nat 131:602–610

    Article  Google Scholar 

  • Stahlhut JK, Cowan DP (2004) Single-locus complementary sex determination in the inbreeding wasp Euodynerus foraminatus Saussure (Hymenoptera: Formicidae). Heredity 92:189–196

    Article  CAS  PubMed  Google Scholar 

  • Starr RL (1984) Sperm competition, kinship, and sociality in the aculeate Hymenoptera. In: Smith RL (ed) Sperm competition and the evolution of animal mating systems. Academic, Orlando, pp 427–464

  • Sundström L (1993) Genetic population structure and sociogenetic organization in Formica truncorum (Hymenoptera; Formicidae). Behav Ecol Sociobiol 33:345–354

    Google Scholar 

  • Sundström L, Keller L, Chapuisat M (2003) Inbreeding and sex-biased gene flow in the ant Formica exsecta. Evolution 57:1552–1561

    PubMed  Google Scholar 

  • Suzuki Y, Iwasa Y (1980) A sex ratio theory or gregarious parasitoids. Res Popul Ecol 11:366–382

    Google Scholar 

  • Tenzer I, degle Ivanissevich S, Morgante M, Gessler C (1999) Identification of microsatellite markers and their application to population genetics of Venturia inaegualis. Phytopathology 89:748–753

    CAS  Google Scholar 

  • Trivers RL, Hare H (1976) Haplodiploidy and the evolution of social insects. Science 191:249–263

    CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Google Scholar 

  • Werren JH (1987) The coevolution of autosomal and cytoplasmic sex ratio factors. J Theor Biol 124:317–334

    Google Scholar 

  • Whiting AR (1967) The biology of the parasitic wasp Mormoniella vitripennis. Q Rev Biol 42:333–406

    Article  Google Scholar 

  • Winter U, Buschinger A (1983) The reproductive biology of a slavemaker ant, Epimyrma ravouxi, and a degenerate slavemaker, E. kraussei (Hymenoptera: Formicidae). Entomol Genet 9:1–15

    Google Scholar 

  • Woyke J (1963) What happens to diploid drone larvae in a honeybee colony. J Apic Res 2:73–75

    Google Scholar 

  • Yamauchi K, Furukawa T, Kinomura K, Takamine H, Tsuji K (1991) Secondary polygyny by inbred wingless sexuals in the dolichoderine ant Technomyrmex albipes. Behav Ecol Sociobiol 29:313–319

    Article  Google Scholar 

Download references

Acknowledgements

Our research was supported by DFG (He 1623/12-2), DAAD (Acciones integradas) and the “INSECTS” research network of the Universities of Copenhagen, Florence, Keele, Lausanne, Oulu, Regensburg, Sheffield, and the ETH Zürich, financed by the European Commission via the Research Training Network established under the Improving Human Potential Programme. We thank T. Wanke, M. Strätz, S. Cremer, and M. Brandt for their help in the field, J.S. Pedersen for advice concerning MateSoft and the calculation of the non-detection error under inbreeding, and the referees for detailed and helpful comments on an earlier draft of this article. All experiments were performed in agreement with the laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Schrempf.

Additional information

Communicated by L. Sundström

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrempf, A., Reber, C., Tinaut, A. et al. Inbreeding and local mate competition in the ant Cardiocondyla batesii. Behav Ecol Sociobiol 57, 502–510 (2005). https://doi.org/10.1007/s00265-004-0869-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-004-0869-3

Keywords

Navigation