Skip to main content
Log in

A simple and inexpensive chemical test for behavioral ecologists to determine the presence of carotenoid pigments in animal tissues

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Animals use several different types of pigments to acquire their colorful ornaments. Knowing the types of pigments that generate animal colors often provides valuable information about the costs of developing bright coloration as well as the benefits of using these signals in social or sexual contexts. It is often assumed that red, orange, and yellow colors in animals are derived from carotenoid pigments, when in fact there are other pigments that confer similar colors on animals. These include the pteridine pigments in a wide range of organisms, hemoglobin in blood-filled sinuses, the psittacofulvins of parrot feathers, and the phaeomelanin pigments in rufous or yellow feathers and fur. In this paper, we describe a quick and easy, two-step chemical method for field biologists to determine if their study species uses carotenoid pigments as integumentary colorants. This laboratory procedure first employs a thermochemical extraction technique, in which acidified pyridine is used under high temperature to free carotenoid pigments from tissue to produce a colorful, pigmented solution. Red, orange, or yellow tissues containing pteridines, hemoglobin, or eumelanins do not release colored pigments into heated pyridine. However, psittacofulvins, and occasionally phaeomelanins, will also solubilize using this method. Thus, a follow-up test is needed, using solvent transfer, to confirm the presence of carotenoids in animal tissues. The use of absorbance spectrophotometry on the colorful solution may also provide information about the predominant carotenoids that bestow color on your study animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3A–C

Similar content being viewed by others

Notes

  1. For certain carotenoid-enriched tissues (e.g., fruits, fish skin), other solvents, such as acetone (Grether et al. 2001) or tetrahydrofuran (McGraw et al. 2001), will also solubilize carotenoids. However, we recommend a standardized procedure that ensures that even the most tightly bound animal tissue matrices will release pigments into solution.

  2. This was the case for non-carotenoid pigments extracted from chicken, turaco, swan, and eider feathers and crow eggshells. However, macaw psittacofulvins did transfer to hexane:TBME, but have never been found in animals other than parrots, and carotenoids have never been found in parrot feathers.

  3. It is also worth noting here that lipophilic psittacofulvins and carotenoids have distinct λmax values (Hudon and Brush 1992), such that absorbance spectrophotometry can be used if necessary as a third diagnostic test to confirm the presence of carotenoids in animal tissues.

References

  • Bauernfeind JC (1981) Carotenoids as colorants and vitamin A precursors: technological and nutritional applications. Academic, New York

    Google Scholar 

  • Berthold P (1967) Über Haftfarben bei Vögeln: Rostfärbung durch Eisenoxid beim Bartgeier (Gypaetus barbatus) und bei anderen Arten. Zool Jahrb Syst 93:507–595

    Google Scholar 

  • Blair JA, Graham J (1954) The pigments of snake skins. 1. The isolation of riboflavin as a pigment of the skins of the green snakes Philothamnus semivariegatus and Dispholidus typus. Biochem J 56:286–287

    CAS  PubMed  Google Scholar 

  • Britton G (1985) General carotenoid methods. Methods Enzymol 111:507–595

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids. Volume 1A: isolation and analysis. Birkhäuser, Basel

    Google Scholar 

  • Brush AH (1978) Avian pigmentation. In: Brush AH (ed) Aves, Chemical Zoology, Vol. X:141–161. Academic, New York

  • Brush AH (1990) Metabolism of carotenoid pigments in birds. FASEB J 4:2969–2977

    CAS  PubMed  Google Scholar 

  • Camplani A, Saino N, Møller AP (1999) Carotenoids, sexual signals and immune function in barn swallows from Chernobyl. Proc R Soc Lond B 266:1111–1116

    CAS  PubMed  Google Scholar 

  • Chen BH, Chen TM, Chien JT (1994) Kinetic model for studying the isomerization of α- and β-carotene during heating and illumination. J Agric Food Chem 42:2391–2397

    CAS  Google Scholar 

  • Collins RP, Kalnins K, (1970) Pteridines in moth, Atteva punctella. J Insect Physiol 16:1587

    CAS  PubMed  Google Scholar 

  • Cone RD, Lu DS, Koppula S, Vage DI, Klungland H, Boston B, Chen WB, Orth DN, Pouton D, Kesterson RA (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51:287–318

    CAS  PubMed  Google Scholar 

  • Czeczuga B (1980a) Carotenoid content in aphids and the host plants. Bull Soc Bot Fr Actual 127:213

    Google Scholar 

  • Czeczuga B (1980b) Investigations on carotenoids in amphibia. 2. Carotenoids occurring in various parts of the body of certain species. Comp Biochem Physiol B 65:623–630

    Article  Google Scholar 

  • Dale J (2000) Ornamental plumage does not signal male quality in red-billed queleas. Proc R Soc Lond B 267:2143–2149

    CAS  PubMed  Google Scholar 

  • Dyck J (1992) Reflectance spectra of plumage areas colored by green feather pigments. Auk 109:293–301

    Google Scholar 

  • Fox D (1976) Animal biochromes and structural colors. University of California Press, Berkeley, Calif.

  • Fox HM, Vevers G (1960) The nature of animal colors. Macmillan, New York

  • Frank F (1939) Die Färbung des Vogelfeder durch Pigment und Struktur. J Ornithol 87:426–523

    CAS  Google Scholar 

  • Goodwin TW (1984) The biochemistry of carotenoids. Volume II. Animals. Chapman and Hall, New York

  • Grether GF, Hudon J, Endler JA (2001) Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata). Proc R Soc Lond B 268:1245–1253

    CAS  PubMed  Google Scholar 

  • Hata M, Hata M (1970) Carotenoid pigments in goldfish (Carassius auratus). 2. Color change and carotenoid pigment composition. Int J Biochem 2:182

    Article  Google Scholar 

  • Hill GE (1999) Mate choice, male quality, and carotenoid-based plumage coloration. Proc Int Ornithol Congr 22:1654–1668

    Google Scholar 

  • Höhn EO (1955) Evidence of iron staining as the cause of rusty discoloration of normally white feathers in Anserine birds. Auk 72:414

    Google Scholar 

  • Hudon J (1991) Unusual carotenoid use by the western tanager (Piranga ludoviciana) and its evolutionary implications. Can J Zool 69:2311–2320

    CAS  Google Scholar 

  • Hudon J, Brush AH (1990) Carotenoids produce flush in the elegant tern plumage. Condor 92:798–801

    Google Scholar 

  • Hudon J, Brush AH (1992) Identification of carotenoid pigments in birds. Methods Enzymol 213:312–321

    CAS  Google Scholar 

  • Inouye CY, Hill GE, Montgomerie R, Stradi RD (2001) Carotenoid pigments in male house finch plumage in relation to age, subspecies, and ornamental coloration. Auk 118:900–915

    Google Scholar 

  • Ito S, Fujita K (1985) Microanalysis of eumelanin and phaeomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal Biochem 144:527–536

    Google Scholar 

  • Jørgensen K, Skibsted LH (1990) Light sensitivity of carotenoids used as food colors: quantum-yields dependence of wavelength and oxygen pressure for direct and sensitized photodegradation of solubilized lutein and β-carotene. Z Lebensm Unters Forsch 190:306–313

    Google Scholar 

  • Katayama T, Shimaya M, Sameshim M, Chichest CO (1973) Biosynthesis of astaxanthin. 11. Carotenoids in lobster, Panulirus japonicus. Bull Jpn Soc Sci Fish 39:215–220

    CAS  Google Scholar 

  • Kennard FH (1918) Ferruginous stains on waterfowl. Auk 35:123–132

    Google Scholar 

  • Laruelle L, Beumont M, Legait E (1951) Recherches sur le mécanisme des changements de couleur des caroncules vasculaires du dindon (Meleagris gallopavo L.). Arch Anat Microsc Morphol Exp 40:91–113

    Google Scholar 

  • Lubnow E (1960) Spektralphotometrische Untersuchungen an Melaninen. Zool Anz [Suppl] 23:135–139

  • Lucas AM, Stettenheim PR (1972) Avian anatomy. Integument. US Department of Agriculture Handbook 362, Washington, D.C.

  • Macedonia JM, James S, Wittle LW, Clark DL (2000) Skin pigments and coloration in the Jamaican radiation of Anolis lizards. J Herpetol 34:99–109

    Google Scholar 

  • Massaro M, Davis LS, Darby JT (2003) Carotenoid-derived ornaments reflect parental quality in male and female yellow-eyed penguins (Megadyptes antipodes). Behav Ecol Sociobiol 55:169–175

    Article  Google Scholar 

  • Matsui K, Marunouchi J, Nakamura M (2002) An ultrastructural and carotenoid analysis of the red ventrum of the Japanese newt, Cynops pyrrhogaster. Pigm Cell Res 15:265–272

    Article  CAS  Google Scholar 

  • Mays Jr HL, McGraw KJ, Ritchison G, Rush V, Parker RS (2004) Sexual dichromatism in the yellow-breasted chat (Icteria virens): spectrophotometric analysis and biochemical basis. J Avian Biol 35:125–134

    Article  Google Scholar 

  • McGraw KJ (2005) Not all red, orange, and yellow colors are carotenoid-based: the need to couple biochemical and behavioral studies of color signals in birds. Proc Indian Nat Sci Acad

  • McGraw KJ, Hill GE (2000) Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration. Proc R Soc Lond B 267:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Hill GE, Stradi R, Parker RS (2001) The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). Physiol Biochem Zool 74:843–852

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Hill GE, Stradi R, Parker RS (2002a) The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American goldfinch. Comp Biochem Physiol B 131:261–269

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Adkins-Regan E, Parker RS (2002b) Anhydrolutein in the zebra finch: a new, metabolically derived carotenoid in birds. Comp Biochem Physiol B 132:813–820

    Google Scholar 

  • McGraw KJ, Hill GE, Parker RS (2003a) Carotenoid pigments in a mutant cardinal: implications for the genetic and enzymatic control mechanisms of carotenoid metabolism in birds. Condor 105:587–592

    Google Scholar 

  • McGraw KJ, Beebee MD, Hill GE, Parker RS (2003b) Lutein-based plumage coloration in songbirds is a consequence of selective pigment incorporation into feathers. Comp Biochem Physiol B 135:689–696

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Wakamatsu K, Ito S, Nolan PM, Jouventin P, Dobson FS, Austic RE, Safran RJ, Siefferman LM, Hill GE, Parker RS (2004a) You can’t judge a pigment by its color: carotenoid and melanin content of brown and yellow feathers in swallows, bluebirds, penguins, and domestic chickens. Condor 106:390–395

    Google Scholar 

  • McGraw KJ, Safran RJ, Evans MR, Wakamatsu K (2004b) European barn swallows use melanin pigments to color their feathers brown. Behav Ecol 15:889–891

    Article  Google Scholar 

  • McGraw KJ, Wakamatsu K, Clark AB, Yasukawa K (2004c) Red-winged blackbirds Agelaius phoeniceus use carotenoid and melanin pigments to color their epaulets. J Avian Biol

    Article  Google Scholar 

  • Miksik I, Holan V, Deyl Z (1996) Avian eggshell pigments and their variability. Comp Biochem Physiol B 113:607–612

    Article  Google Scholar 

  • Miltenberger RJ, Mynatt RL, Bruce BD, Wilkison WO, Woychik RP, Michaud EJ (1999) An agouti mutation lacking the basic domain induces yellow pigmentation but not obesity in transgenic mice. Proc Natl Acad Sci USA 96:8579–8584

    Google Scholar 

  • Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence, or detoxification ability? Avian Poult Biol Rev 11:137–159

    Google Scholar 

  • Moreau RE (1958) Some aspects of the Musophagidae. Part 3. Ibis 100:238–270

    Google Scholar 

  • Negro JJ, Margalida A, Hiraldo F, Heredia R (1999) The function of the cosmetic coloration of bearded vultures: when art imitates life. Anim Behav 58:F14–F17

    PubMed  Google Scholar 

  • Oehme H (1969) Vergleichende Untersuchungen über die Färbung der Vogeliris. Biol Zentralbl 88:3–35

    Google Scholar 

  • Oliphant LW, Hudon J, Bagnara JT (1992) Pigment cell refugia in homeotherms—The unique evolutionary position of the iris. Pigm Cell Res 5:367–371

    CAS  Google Scholar 

  • Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514

    Article  Google Scholar 

  • Owens IPF, Hartley IR (1999) Sexual dimorphism in birds: why are there so many different forms of dimorphism? Proc R Soc Lond B 265:397–407

    Google Scholar 

  • Rempeters G, Henze M, Anders F (1981) Carotenoids and pteridines in the skin of interspecific hybrids of Xiphophorus. Comp Biochem Physiol B 69:91–98

    Article  Google Scholar 

  • Rodriguez-Amaya DB (1999) A guide to carotenoid analysis in foods. OMNI Research and ILSI Press, Washington, D.C.

  • Stradi R (1998) The colour of flight: carotenoids in bird plumage. Solei Gruppo Editoriale Informatico, Milan, Italy

    Google Scholar 

  • Stradi R, Pini E, Celetano G (2001) The chemical structure of the pigments in Ara macao plumage. Comp Biochem Physiol B 130:57–63

    CAS  PubMed  Google Scholar 

  • Stresemann E (1927–1934) Aves.-Vögel. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, vol 7, part 2. de Gruyter, Berlin

  • Valadon LRG, Mummery RS (1973) Comparative study of carotenoids of ladybirds (ladybugs) milking aphids feeding on vetch. Comp Biochem Physiol 46:427–434

    Article  CAS  Google Scholar 

  • Völker O (1934) Die Abhängigkeit der Lipochrombildung bei Vögeln von pflanzlichen Carotinoiden. J Ornithol 82:439–450

    Google Scholar 

  • Völker O (1936) Ueber den gelben Federfarbstoff des Wellensittichs (Melanopsittacus undulatus, Shaw). J Ornithol 84:618–630

    Google Scholar 

  • Völker O (1937) Ueber Fluoreszierende, gelbe Federpigmente bei Papageien, eine neue Klasse von Federfarbstoffen. J Ornithol 85:136–146

    Google Scholar 

  • Völker O (1938) Porphyrin in Vogelfedern. J Ornithol 86:436–456

    Google Scholar 

  • With TK (1973) Porphyrins in egg shells. Biochem J 137:597–598

    Google Scholar 

  • Wolf TM, Wasserstein R, Yoon JS (1987) Qualitative and quantitative studies of pteridine eye pigments in Drosophila. - 7 species of Hawaiian Drosophila and Drosophila melanogaster. Biochem Syst Ecol 15:239–245

    Article  CAS  Google Scholar 

  • Yamada S, Tanaka Y, Sameshima M, Ito Y (1990) Pigmentation of prawn (Penaeus japonicus) with carotenoids. 1. Effect of dietary astaxanthin, beta-carotene and canthaxanthin on pigmentation. Aquaculture 87:323–330

    Article  CAS  Google Scholar 

  • Yamaguchi K, Miki W, Toriu N, Kondo Y, Murakami M, Konosu S, Satake M, Fujita T (1983) Chemistry and utilization of plankton. 1. The composition of carotenoid-pigments in the Antarctic krill Euphausia superba. Bull Jpn Soc Sci Fish 49:1411–1415

    CAS  Google Scholar 

  • Ziegler I (1965) Pterine als Wirkstoffe und Pigmente. Ergeb Physiol 56:1–66

    Google Scholar 

Download references

Acknowledgements

This paper evolved from several inquiries and discussions at the 9th International Behavioral Ecology Congress in Montreal, Quebec, Canada. The Institutional Animal Care and Use Committee at Cornell University approved all procedures reported in our study (protocol no. 99–89). We thank T. Czeschlik and two anonymous referees for helpful comments on the manuscript. This research was funded by the Environmental Protection Agency (STAR fellowship to K.J.M.); during manuscript preparation, K.J.M. was supported by the United States Department of Agriculture (grant to K. Klasing) and by the College of Liberal Arts and Sciences and the School of Life Sciences at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. McGraw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGraw, K.J., Hudon, J., Hill, G.E. et al. A simple and inexpensive chemical test for behavioral ecologists to determine the presence of carotenoid pigments in animal tissues. Behav Ecol Sociobiol 57, 391–397 (2005). https://doi.org/10.1007/s00265-004-0853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-004-0853-y

Keywords

Navigation