Skip to main content

Advertisement

Log in

Systematic review of artificial intelligence tack in preventive orthopaedics: is the land coming soon?

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

This study aims to describe and assess the current stage of the artificial intelligence (AI) technology integration in preventive orthopaedics of the knee and hip joints.

Materials and methods

The study was conducted in strict compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Literature databases were searched for articles describing the development and validation of AI models aimed at diagnosing knee or hip joint pathologies or predicting their development or course in patients. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and QUADAS-AI tools.

Results

56 articles were found that meet all the inclusion criteria. We identified two problems that block the full integration of AI into the routine of an orthopaedic physician. The first of them is related to the insufficient amount, variety and quality of data for training, and validation and testing of AI models. The second problem is the rarity of rational evaluation of models, which is why their real quality cannot always be evaluated.

Conclusion

The vastness and relevance of the studied topic are beyond doubt. Qualitative and optimally validated models exist in all four scopes considered. Additional optimization and confirmation of the models’ quality on various datasets are the last technical stumbling blocks for creating usable software and integrating them into the routine of an orthopaedic physician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92(4):807–812. https://doi.org/10.1016/j.gie.2020.06.040.

    Article  Google Scholar 

  2. Atella V, Piano Mortari A, Kopinska J, Belotti F, Lapi F, Cricelli C, Fontana L (2019) Trends in age-related disease burden and healthcare utilization. Aging Cell 18(1):e12861

    Article  CAS  Google Scholar 

  3. Federer SJ, Jones GG (2021) Artificial intelligence in orthopaedics: a scoping review. PLoS ONE 16(11):e0260471

    Article  CAS  Google Scholar 

  4. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, ... and Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Reviews 10(1):1–11

  5. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, ... and QUADAS-2 Group* (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

  6. Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R, ... and Darzi A (2021) A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med 27(10):1663–1665

  7. Anifah L, Purnama IKE, Hariadi M, Purnomo MH (2013) Osteoarthritis classification using self organizing map based on gabor kernel and contrast-limited adaptive histogram equalization. Open Biomed Eng J 7:18

    Article  Google Scholar 

  8. Jin C, Yang Y, Xue ZJ, Liu KM, Liu J (2013) Automated analysis method for screening knee osteoarthritis using medical infrared thermography. J Med Biol Eng 33(5):471–477

    Article  Google Scholar 

  9. WeiKoh J, Tan TS, EnChuah Z, Soh SS, Arif M, Leong K (2014) Genetic algorithm optimized back propagation neural network for knee osteoarthritis classification. Res J Appl Sci Eng Technol 8(16):1787–1793

    Article  Google Scholar 

  10. Ashinsky BG, Coletta CE, Bouhrara M, Lukas VA, Boyle JM, Reiter DA, ... and Spencer RG (2015) Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging. Osteoarthr Cartilage 23(10):1704–1712

  11. Subromoniam M, Barani S, Rajini V (2015) A non-invasive computer aided diagnosis of osteoarthritis from digital X-ray images. Biomed Res 26(4):721–729 (ISSN0970-938X)

    Google Scholar 

  12. Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, ... and Lungren MP (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15(11):e1002699

  13. Abedin J, Antony J, McGuinness K, Moran K, O’Connor NE, Rebholz-Schuhmann D, Newell J (2019) Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  14. Chang PD, Wong TT, Rasiej MJ (2019) Deep learning for detection of complete anterior cruciate ligament tear. J Digit Imaging 32(6):980–986

    Article  Google Scholar 

  15. Chen P, Gao L, Shi X, Allen K, Yang L (2019) Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput Med Imaging Graph 75:84–92

    Article  Google Scholar 

  16. Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, ... and Boussel L (2019) Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diag Interv Imaging 100(4):235–242

  17. Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S (2019) Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging 32(3):471–477

    Article  Google Scholar 

  18. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S (2019) 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging 49(2):400–410

    Article  Google Scholar 

  19. Pedoia V, Lee J, Norman B, Link TM, Majumdar S (2019) Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire osteoarthritis Initiative baseline cohort. Osteoarthr Cart 27(7):1002–1010

    Article  CAS  Google Scholar 

  20. Roblot V, Giret Y, Antoun MB, Morillot C, Chassin X, Cotten A, ... and Fournier L (2019) Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging 100(4):243–249

  21. Saygılı A, Albayrak S (2019) An efficient and fast computer-aided method for fully automated diagnosis of meniscal tears from magnetic resonance images. Artif Intell Med 97:118–130

    Article  Google Scholar 

  22. Jayadev C, Hulley P, Swales C, Snelling S, Collins G, Taylor P, Price A (2020) Synovial fluid fingerprinting in end-stage knee osteoarthritis: a novel biomarker concept. Bone Joint Res 9(9):623–632

    Article  Google Scholar 

  23. Kaur R, Kaur K, Khamparia A, Anand D (2020) An improved and adaptive approach in ANFIS to predict knee diseases. Int J Healthcare Inform Syst Informat (IJHISI) 15(2):22–37

    Article  CAS  Google Scholar 

  24. Liu B, Luo J, Huang H (2020) Toward automatic quantification of knee osteoarthritis severity using improved Faster R-CNN. Int J Comput Assist Radiol Surg 15(3):457–466

    Article  Google Scholar 

  25. Tiulpin A, Saarakkala S (2020) Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. Diagnostics 10(11):932

    Article  Google Scholar 

  26. Zhang L, Li M, Zhou Y, Lu G, Zhou Q (2020) Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. J Magn Reson Imaging 52(6):1745–1752

    Article  Google Scholar 

  27. Bany Muhammad M, Yeasin M (2021) Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs. Sci Rep 11(1):1–11

    Article  Google Scholar 

  28. Bayramoglu N, Nieminen MT, Saarakkala S (2021) Automated detection of patellofemoral osteoarthritis from knee lateral view radiographs using deep learning: data from the Multicenter Osteoarthritis Study (MOST). Osteoarthr Cartilage 29(10):1432–1447

    Article  CAS  Google Scholar 

  29. Hirvasniemi J, Klein S, Bierma-Zeinstra S, Vernooij MW, Schiphof D, Oei EH (2021) A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone. Eur Radiol 31(11):8513–8521

    Article  Google Scholar 

  30. Kokkotis C, Ntakolia C, Moustakidis S, Giakas G, Tsaopoulos D (2022) Explainable machine learning for knee osteoarthritis diagnosis based on a novel fuzzy feature selection methodology. Phys Eng Sci Med 45(1):219–229

    Article  Google Scholar 

  31. Li X, Sun Y, Jiao J, Wu H, Yang C, Yang X (2021) Automatic discoid lateral meniscus diagnosis from radiographs based on image processing tools and machine learning. J Healthc Eng 2021:6662664

    Google Scholar 

  32. Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W (2021) Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury. J Healthc Eng 2021:4076175

    Google Scholar 

  33. Lind A, Akbarian E, Olsson S, Nåsell H, Sköldenberg O, Razavian AS, Gordon M (2021) Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system. PLoS ONE 16(4):e0248809

    Article  CAS  Google Scholar 

  34. Mahum R, Rehman SU, Meraj T, Rauf HT, Irtaza A, El-Sherbeeny AM, El-Meligy MA (2021) A novel hybrid approach based on deep cnn features to detect knee osteoarthritis. Sensors 21(18):6189

    Article  Google Scholar 

  35. Olsson S, Akbarian E, Lind A, Razavian AS, Gordon M (2021) Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population. BMC Musculoskelet Disord 22(1):1–8

    Article  Google Scholar 

  36. Qiu X, Liu Z, Zhuang M, Cheng D, Zhu C, Zhang X (2021) Fusion of cnn1 and cnn2-based magnetic resonance image diagnosis of knee meniscus injury and a comparative analysis with computed tomography. Comput Methods Programs Biomed 211:106297

    Article  Google Scholar 

  37. Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, ... and d'Assignies GJPM (2021) Meniscal lesion detection and characterization in adult knee MRI: a deep learning model approach with external validation. Physica Med 83:64–71

  38. Swiecicki A, Li N, O'Donnell J, Said N, Yang J, Mather RC, ... and Mazurowski MA (2021) Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists. Comput Biol Med 133:104334

  39. Tack A, Shestakov A, Lüdke D, Zachow S (2021) A multi-task deep learning method for detection of meniscal tears in MRI data from the osteoarthritis initiative database. Front Bioeng Biotechnol 9:747217

    Article  Google Scholar 

  40. Wang K, Niu X, Dou Y, Xie D, Yang T (2021) A Siamese network with adaptive gated feature fusion for individual knee OA features grades prediction. Sci Rep 11(1):1–12

    Google Scholar 

  41. Zeng K, Hua Y, Xu J, Zhang T, Wang Z, Jiang Y, ... and Cai Z (2021) Multicentre study using machine learning methods in clinical diagnosis of knee osteoarthritis. J Healthc Eng 2021

  42. Abdullah SS, Rajasekaran MP (2022) Automatic detection and classification of knee osteoarthritis using deep learning approach. Radiol Med (Torino) 127(4):398–406

    Article  Google Scholar 

  43. Boniatis I, Costaridou L, Cavouras D, Panagiotopoulos E, Panayiotakis G (2007) A morphological descriptors-based pattern recognition system for the characterization of hip osteoarthritis severity from X-ray images. Nucl Instrum Methods Phys Res, Sect A 580(2):1093–1096

    Article  CAS  Google Scholar 

  44. Boniatis I, Costaridou L, Cavouras D, Kalatzis I, Panagiotopoulos E, Panayiotakis G (2007) Assessing hip osteoarthritis severity utilizing a probabilistic neural network based classification scheme. Med Eng Phys 29(2):227–237

    Article  CAS  Google Scholar 

  45. Xue Y, Zhang R, Deng Y, Chen K, Jiang T (2017) A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS ONE 12(6):e0178992

    Article  Google Scholar 

  46. von Schacky CE, Sohn JH, Liu F, Ozhinsky E, Jungmann PM, Nardo L, ... and Pedoia V (2020) Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs. Radiology 295(1):136

  47. Shamir L, Ling SM, Scott W, Hochberg M, Ferrucci L, Goldberg IG (2009) Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr Cartilage 17(10):1307–1312

    Article  CAS  Google Scholar 

  48. Yoo TK, Kim DW, Choi SB, Oh E, Park JS (2016) Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross-sectional study. PLoS ONE 11(2):e0148724

    Article  Google Scholar 

  49. Ashinsky BG, Bouhrara M, Coletta CE, Lehallier B, Urish KL, Lin PC, ... and Spencer RG (2017) Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res 35(10):2243–2250

  50. Tiulpin A, Klein S, Bierma-Zeinstra S, Thevenot J, Rahtu E, Meurs JV, ... and Saarakkala S (2019) Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep 9(1):1–11

  51. Guan B, Liu F, Haj-Mirzaian A, Demehri S, Samsonov A, Neogi T, ... and Kijowski R (2020) Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period. Osteoarthr Cartilage 28(4):428–437

  52. Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, ... and Deniz CM (2020) Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative. Radiology 296(3):584

  53. Pareek A, Parkes CW, Bernard CD, Abdel MP, Saris DB, Krych AJ (2020) The SIFK score: a validated predictive model for arthroplasty progression after subchondral insufficiency fractures of the knee. Knee Surg Sports Traumatol Arthrosc 28(10):3149–3155

    Article  Google Scholar 

  54. Tolpadi AA, Lee JJ, Pedoia V, Majumdar S (2020) Deep learning predicts total knee replacement from magnetic resonance images. Sci Rep 10(1):1–12

    Article  Google Scholar 

  55. Bonakdari H, Jamshidi A, Pelletier JP, Abram F, Tardif G, Martel-Pelletier J (2021) A warning machine learning algorithm for early knee osteoarthritis structural progressor patient screening. Ther Adv Musculoskelet Dis 13:1759720X21993254

    Article  CAS  Google Scholar 

  56. Cheung JCW, Tam AYC, Chan LC, Chan PK, Wen C (2021) Superiority of multiple-joint space width over minimum-joint space width approach in the machine learning for radiographic severity and knee osteoarthritis progression. Biology 10(11):1107

    Article  Google Scholar 

  57. Schiratti JB, Dubois R, Herent P, Cahané D, Dachary J, Clozel T, ... and Moingeon P (2021) A deep learning method for predicting knee osteoarthritis radiographic progression from MRI. Arthritis Res Ther 23(1):1–10

  58. Almhdie-Imjabbar A, Nguyen KL, Toumi H, Jennane R, Lespessailles E (2022) Prediction of knee osteoarthritis progression using radiological descriptors obtained from bone texture analysis and Siamese neural networks: data from OAI and MOST cohorts. Arthritis Res Ther 24(1):1–13

    Article  Google Scholar 

  59. Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, Kijowski R (2022) Deep learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol 51(2):363–373

    Article  Google Scholar 

  60. Joseph GB, McCulloch CE, Nevitt MC, Link TM, Sohn JH (2022) Machine learning to predict incident radiographic knee osteoarthritis over 8 Years using combined MR imaging features, demographics, and clinical factors: data from the Osteoarthritis Initiative. Osteoarthr Cartilage 30(2):270–279

    Article  CAS  Google Scholar 

  61. Gielis WP, Weinans H, Welsing PM, van Spil WE, Agricola R, Cootes TF, ... and Lindner C (2020) An automated workflow based on hip shape improves personalized risk prediction for hip osteoarthritis in the CHECK study. Osteoarthr Cartilage 28(1):62–70

  62. Klontzas ME, Volitakis E, Aydingöz Ü, Chlapoutakis K, Karantanas AH (2022) Machine learning identifies factors related to early joint space narrowing in dysplastic and non-dysplastic hips. Eur Radiol 32(1):542–550

    Article  Google Scholar 

  63. Kellgren JH, Lawrence J (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494

    Article  CAS  Google Scholar 

  64. Mikołajczyk A, and Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW) 117–122 IEEE

  65. Janiesch C, Zschech P, Heinrich K (2021) Machine learning and deep learning. Electron Mark 31(3):685–695

    Article  Google Scholar 

  66. Shinde PP, and Shah S (2018) A review of machine learning and deep learning applications. In 2018 Fourth international conference on computing communication control and automation (ICCUBEA) 1–6 IEEE

  67. Dargan S, Kumar M, Ayyagari MR, Kumar G (2020) A survey of deep learning and its applications: a new paradigm to machine learning. Arch Comput Methods Eng 27(4):1071–1092

    Article  Google Scholar 

  68. Lai Y (2019) A comparison of traditional machine learning and deep learning in image recognition. J Phys: Conf Ser 1314(1):012148 (IOP Publishing)

    Google Scholar 

  69. Dhall D, Kaur R, amd Juneja M (2020) Machine learning: a review of the algorithms and its applications. Proceed ICRIC 2019 47-63

  70. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M (2021) External validation of prognostic models: what, why, how, when and where? Clin Kidney J 14(1):49–58

    Article  Google Scholar 

  71. Berrar D (2019) Cross-Validation.

  72. Ghojogh B, and Crowley M (2019) The theory behind overfitting, cross validation, regularization, bagging, and boosting: tutorial. arXiv preprint arXiv:1905.12787

  73. Paton C, Kobayashi S (2019) An open science approach to artificial intelligence in healthcare. Yearb Med Inform 28(01):047–051

    Article  Google Scholar 

  74. Prior F, Almeida J, Kathiravelu P, Kurc T, Smith K, Fitzgerald TJ, Saltz J (2020) Open access image repositories: high-quality data to enable machine learning research. Clin Radiol 75(1):7–12

    Article  CAS  Google Scholar 

Download references

Funding

Research at Sechenov University was funded by the Ministry of Science and Higher Education of the Russian Federation under the grant agreement no. 075–15-2021–596.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Lipina.

Ethics declarations

Ethical approval

A systematic review is not required ethics committee approval.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneev, A., Lipina, M., Lychagin, A. et al. Systematic review of artificial intelligence tack in preventive orthopaedics: is the land coming soon?. International Orthopaedics (SICOT) 47, 393–403 (2023). https://doi.org/10.1007/s00264-022-05628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-022-05628-2

Keywords

Navigation