Skip to main content

Advertisement

Log in

Tibial tuberosity–tibial intercondylar midpoint distance measured on computed tomography scanner is not biased during knee rotation and could be clinically more relevant than current measurement systems

  • Invited Papers
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this retrospective cross-sectional case-control study was to evaluate an alternative imaging test for lateralization of the tibial tuberosity, unbiased towards knee rotation.

Methods

On axial CT images of 129 knees, classified as cases (two or more patellar luxations) and controls (no patellar luxations), two raters gauged the standard tibial tuberosity–trochlear groove (TT–TG) distance, tibial tuberosity–femoral intercondylar midpoint (TT–FIM) distance, and new tibial tuberosity–tibial intercondylar midpoint (TT–TIM) distance singly, and knee longitudinal rotation angles (LRAs), and the presence of femoral trochlear dysplasia (FTD) jointly.

Results

All imaging tests intercorrelated and discriminated between stability groups. TT–TIM had the lowest values with the highest precision. Though poorly, TT–TG and TT–FIM negatively correlated with age and LRAs regarding femur, but positively with presence of FTD, whereas TT–TIM was unbiased. The accuracy of TT–TG (> 20 mm), TT–FIM (> 20 mm), and TT–TIM (> 13 mm) was good with almost perfect reproducibility. Only TT–TIM was sex-biased (p = 0.009), with > 12 mm cut-off in females and (presumably) > 14 mm in males.

Conclusion

TT–TIM is an alternative imaging test for lateralization of the tibial tuberosity, unbiased towards knee rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

FR:

Femoral rotation

FTD:

Femoral trochlear dysplasia

FTR:

Fibulotibial rotation

LRA:

Longitudinal rotation angle (of the knee)

MALL:

Mechanical axis of the lower limb

MRI:

Magnetic resonance imaging

PTI:

Patellotrochlear index

Q→:

Quadriceps vector

TR:

Tibial rotation

TT–FIM:

Tibial tuberosity–femoral intercondylar midpoint (distance)

TT–PCL:

Tibial tuberosity–posterior cruciate ligament (distance)

TT–TG:

Tibial tuberosity–trochlear groove (distance)

TT–TIM:

Tibial tuberosity–tibial intercondylar midpoint (distance)

References

  1. Sundararajan SR, Raj M, Ramakanth R, Muhil K, Rajasekaran S (2020) Prediction of recurrence based on the patellofemoral morphological profile and demographic factors in first-time and recurrent dislocators. Int Orthop (SICOT). https://doi.org/10.1007/s00264-020-04639-1

  2. Tan SHS, Lim BY, Chng KSJ, Doshi C, Wong FKL, Lim AKS, Hui JH (2019) The difference between computed tomography and magnetic resonance imaging measurements of tibial tubercle–trochlear groove distance for patients with or without patellofemoral instability: a systematic review and meta-analysis. J Knee Surg. https://doi.org/10.1055/s-0039-1688563

  3. Soumalainen JS, Regalado G, Joukainen A, Kääriäinen T, Könönen M, Manninen H, Sipola P, Kokki H (2018) Effect of knee flexion and extension on the tibial-tuberosity-trochlear groove (TT–TG) distance in adolescents. J Exp Orthop 5:31. https://doi.org/10.1186/s40634-018-0149-1

    Article  Google Scholar 

  4. Brady JM, Rosencrans AS, Shubin Stein BE (2018) Use of TT–PCL versus TT–TG. Curr Rev Musculoskelet Med. https://doi.org/10.1007/s12178-018-9481-4

  5. Hinckel BB, Gobbi RG, Kihara Filho EN, Demange MK, Pécora JR, Camanho GL (2015) Patellar tendon–trochlear groove angle measurements. A new method for patellofemoral rotational analyses. Ortho J Sports Med. https://doi.org/10.1177/2325967115601031

  6. Köhlitz T, Scheffler S, Jung T, Hoburg A, Vollnberg B, Wiener E, Diederichs G (2013) Prevalence and patterns of anatomical risk factors in patients after patellar dislocation: a case control study using MRI. Eur Radiol 23:1067–1074. https://doi.org/10.1007/s00330-012-2696-7

    Article  PubMed  Google Scholar 

  7. Dietrich TJ, Betz M, Pfirmann CWA, Koch PP, Fucentese SF (2012) End-stage extension of the knee and its influence on tibial tuberosity groove distance (TT–TG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-012-2357-z

  8. Schoettle PB, Zanetti M, Seifert B, Pfirmann CWA, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31. https://doi.org/10.1016/j.knee.2005.06.003

    Article  PubMed  Google Scholar 

  9. Shakespeare D, Fick D (2005) Patellar instability—can the TT–TG distance be measured clinically? Knee 12(3):201–204. https://doi.org/10.1016/j.knee.2003.08.007

    Article  PubMed  Google Scholar 

  10. Anley CM, Morris GV, Saithna A, James SL, Snow M (2015) Defining the role of the tibial tubercle-trochlear groove and tibial tubercle-posterior cruciate ligament distances in the work-up of patients with patellofemoral disorders. Am J Sports Med 43(6):1348–1353. https://doi.org/10.1177/0363546515576128

    Article  PubMed  Google Scholar 

  11. Prakash J, Seon JK, Ahn HW, Cho KJ, Im CJ, Song EK (2018) Factors affecting tibial tuberosity-trochlear groove distance in recurrent patellar dislocation. Clin Orthop Surg 10(4):420–426. https://doi.org/10.4055/cios.2018.10.4.420

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greene WB, Heckman JD (1994) The clinical measurement of joint motion. American academy of orthopaedic surgeons, Rosemont, pp 4, 5, 115, 116

  13. Duthon VB (2015) Acute traumatic patellar dislocation. Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2014.12.001

  14. Nizić D (2012) Comparison of positions of the trochlear groove line and the vertical midline of the pericondylar rectangle on axial computed tomography: a retrospective pilot study. Skelet Radiol 41(9):1099–1104. https://doi.org/10.1007/s00256-011-1346-5

    Article  Google Scholar 

  15. Beaconsfield T, Pintore E, Maffulli N, Petri GJ (1994) Radiological measurements in patellofemoral disorders. A review. Clin Orthop Relat Res 308:18–28. https://doi.org/10.1097/00003086-199411000-00004

    Article  Google Scholar 

  16. Koëter S, Horstmann WG, Wagenaar FCBM, Huysse W, Wymenga AB, Anderson PG (2007) A new CT scan method for measuring the tibial tubercle trochlear groove distance in patellar instability. Knee 14(2):128–132. https://doi.org/10.1016/j.knee.2006.11.003

    Article  PubMed  Google Scholar 

  17. Saper MG, Popovich JM, Fajardo R, Hess S, Pascotto JL, Shingles M (2016) The relationship between tibial tubercle–trochlear groove distance and noncontact anterior cruciate ligament injuries in adolescents and young adults. Arthroscopy 32(1):63–68. https://doi.org/10.1016/j.arthro.2015.06.036

    Article  PubMed  Google Scholar 

  18. Lin YF, Jan MH, Lin DH, Cheng CK (2008) Different effects of femoral and tibial rotation on the different measurements of patella tilting: an axial computed tomography study. J Orthop Surg Res 3:5. https://doi.org/10.1186/1749-799X-3-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26. https://doi.org/10.1007/bf01552649

    Article  CAS  PubMed  Google Scholar 

  20. Department of psychological methods (2019) JASP. University of Amsterdam, Amsterdam. https://jasp-stats.org/. Accessed 6 Sept 2019

  21. Ghasemi A, Zahediasl S (2012) Normality test for statistical analysis: a guide for nonstatisticians. Int J Endocrinol Metab 10(2):486–489. https://doi.org/10.5812/ijem.3505

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale, pp 284–287

    Google Scholar 

  23. Glantz SA (2005) Primer of biostatistics, 6th edn. McGraw-Hill, New York, pp 101–104

    Google Scholar 

  24. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  25. Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. MMJ 24(3):69–71. https://www.ajol.info/index.php/mmj/article/view/81576/71739. Accessed 3 Sept 2019

  26. Šimundić A-M (2009) Measures of diagnostic accuracy: basic definitions. EJIFCC 19(4):203–211

    PubMed  PubMed Central  Google Scholar 

  27. Reid N (2017) Odds ratios and relative risk. University of Toronto, Canada: Department of statistical sciences. http://utstat.utoronto.ca/reid/odds.pdf. Accessed 17 Aug 2017

  28. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174. https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  29. Becher C, Fleischer B, Rase M, Schumacher T, Ettinger M, Ostermeier S, Smith T (2015) Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-015-3829-8

  30. Bayhan IA, Kirat A, Alpay Y, Ozkul B, Kargin D (2018) Tibial tubercle–trochlear groove distance and angle are higher in children with patellar instability. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-4997-0

  31. Hernigou J, Chahidi E, Bouaboula M, Moest E, Callewier A, Kyriakydis T, Koulalis D, Bath O (2018) Knee size chart nomogram for evaluation of tibial tuberosity-trochlear groove distance in knees with or without history of patellofemoral instability. Int Orthop (SICOT). https://doi.org/10.1007/s00264-018-3856-4

  32. Pennock AT, Alam M, Bastrom T (2014) Variation in tibial tubercle–trochlear groove measurement as a function of age, sex, size, and patellar instability. Am J Sports Med 42(2):389–393. https://doi.org/10.1177/0363546513509058

    Article  PubMed  Google Scholar 

  33. Worden A, Kaar S, Owen J, Cutuk A (2015) Radiographic and anatomic evaluation of tibial tubercle to trochlear groove distance. J Knee Surg. https://doi.org/10.1055/s-0035-1569478

  34. Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S (2012) Tibial tubercle–posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40(5):1119–1125. https://doi.org/10.1177/0363546512438762

    Article  PubMed  Google Scholar 

  35. Cooney AD, Kazi Z, Caplan N, Newby M, Clair Gibson AS, Kader DF (2012) The relationship between quadriceps angle and tibial tuberosity-trochlear groove distance in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc 20:2399–2404. https://doi.org/10.1007/s00167-012-1907-8

    Article  CAS  PubMed  Google Scholar 

  36. Thakkar RS, Del Grande F, Wadhwa V, Chalian M, Andreisek G, Carrino JA, Eng J, Chhabra A (2015) Patellar instability: CT and MRI measurements and their correlation with internal derangement findings. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-015-3614-8

  37. Camp CL, Heidenreich MJ, Dahm DL, Bond JR, Collins MS, Krych AJ (2014) A simple method of measuring tibial tubercle to trochlear groove distance on MRI: description of a novel and reliable technique. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-014-3405-7

  38. Smith TO, Davies L, Toms AP, Hing CB, Donell ST (2011) The reliability and validity of radiological assessment for patellar instability. A systematic review and meta analysis. Skelet Radiol 40:399–414. https://doi.org/10.1007/s00256-010-0961-x

    Article  Google Scholar 

  39. Marzo JM, Kluczynski MA, Notino A, Bisson LJ (2017) Measurement of tibial tuberosity–trochlear groove offset distance by weightbearing cone-beam computed tomography scan. Orthop J Sports Med 5(10). https://doi.org/10.1177/2325967117734158

  40. Marquez-Lara A, Andersen J, Lenchik L, Ferguson CM, Gupta P (2017) Variability in patellofemoral alignment measurements on MRI: influence of knee position. AJR 208:1–6. https://doi.org/10.2214/AJR.16.17007

    Article  Google Scholar 

  41. Williams AA, Elias JJ, Tanaka MJ, Thawait GK, Demehri S, Carrino JA, Cosgarea AJ (2015) The relationship between tibial tuberosity-trochlear groove distance and abnormal patellar tracking in patients with unilateral patellar instability. J Arthrosc Relat Surg:1–7. https://doi.org/10.1016/j.arthro.2015.06.037

  42. Tanaka MJ, Elias JJ, Williams AA, Carrino JA, Cosgarea AJ (2015) Correlation between changes in tibial tuberosity–trochlear groove distance and patellar position during active knee extension on dynamic kinematic computed tomographic imaging. Arthroscopy:1–8. https://doi.org/10.1016/j.arthro.2015.03.015

  43. Camathias C, Pagenstert G, Stutz U, Barg A, Müller-Gerbl M, Nowakowski AM (2015) The effect of knee flexion and rotation on the tibial tuberosity-trochlear groove distance. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-015-3508-9

  44. Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S (2014) The position of the tibia tubercle in 0°–90° flexion: comparing patients with patella dislocation to healthy volunteers. Knee Surg Sports Traumatol Arthrosc 22:2396–2400. https://doi.org/10.1007/s00167-014-3173-4

    Article  PubMed  Google Scholar 

  45. Izadpanah K, Weitzel E, Vicari M, Hennig J, Weigel M, Südkamp NP, Niemeyer P (2013) Influence of knee flexion angle and weight bearing on the tibial tuberosity–trochlear groove (TTTG) distance for evaluation of patellofemoral alignment. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-013-2537-5

  46. Yao L, Gai N, Boutin RD (2014) Axial scan orientation and the tibial tubercle–trochlear groove distance: error analysis and correction. AJR 202:1291–1296. https://doi.org/10.2214/AJR.13.11488

    Article  PubMed  Google Scholar 

  47. Li Y, Chen C, Duan X, Deng B, Xiong R, Wang F, Yang L (2015) Influence of the image levels of distal femur on the measurement of tibial tubercle–trochlear groove distance—a comparative study. J Orthop Surg Res 10:174. https://doi.org/10.1186/s13018-015-0323-4

    Article  Google Scholar 

  48. Tscholl PM, Antoniadis A, Dietrich TJ, Koch PP, Fucentese SF (2014) The tibial tubercle–trochlear groove distance in patients with trochlear dysplasia: the influence of the proximally flat trochlea. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-014-3386-6

  49. Haj-Mirzaian A, Guermazi A, Hakky M, Sereni C, Zikria B, Roemer FW, Tanaka MJ, Cosgarea AJ, Demehri S (2018) Tibial tuberosity to trochlear groove distance and its association with patellofemoral osteoarthritis-related structural damage worsening: data from the osteoarthritis initiative. Eur Radiol. https://doi.org/10.1007/s00330-018-5460-9

  50. Otsuki S, Nakajima M, Okamoto Y, Oda S, Hoshiyama Y, Iida G, Neo M (2014) Correlation between varus knee malalignment and patellofemoral osteoarthritis. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-014-3360-3

  51. Imhoff FB, Funke V, Muench LN, Sauter A, Englmaier M, Woertler K, Imhoff AB, Feucht MJ (2019) The complexity of bony malalignment in patellofemoral disorders: femoral and tibial torsion, trochlear dysplasia, TT–TG distance, and frontal mechanical axis correlate with each other. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05542-y

  52. Hirschmann A, Buck FM, Herschel R, Pfirrmann CWA, Fucentese SF (2015) Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-015-3853-8

  53. Dornacher D, Reichel H, Kappe T (2015) Does tibial tuberosity-trochlear groove distance (TT–TG) correlate with knee size or body weight? Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-015-3526-7

  54. Ferlic PW, Runer A, Dirisamer F, Balcarek P, Giesinger J, Biedermann R, Liebensteiner MC (2017) The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation. Int Orthop (SICOT). https://doi.org/10.1007/s00264-017-3531-1

  55. Camp CL, Heidenreich MJ, Dahm DL, Stuart MJ, Levy BA, Krych AJ (2015) Individualizing the tibial tubercle–trochlear groove distance. Patellar instability ratios that predict recurrent instability. Am J Sports Med. https://doi.org/10.1177/0363546515602483

  56. Cao P, Niu Y, Liu C, Wang X, Duan G, Mu Q, Luo X, Wang F (2017) Ratio of the tibial tuberosity–trochlear groove distance to the tibial maximal mediolateral axis: a more reliable and standardized way to measure the tibial tuberosity–trochlear groove distance. Knee. https://doi.org/10.1016/j.knee.2017.10.001

  57. Heidenreich MJ, Sanders TL, Hevesi M, Johnson NR, Wu IT, Camp CL, Dahm DL, Krych AJ (2017) Individualizing the tibial tubercle to trochlear groove distance to patient specific anatomy improves sensitivity for recurrent instability. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-017-4752-y

  58. Guilbert S, Chassaing V, Radier C, Hulet C, Rémy F, Chouteau J, Chotel F, Boisrenoult P, Sebilo A, Ferrua P, Ehkirch FP, Bertin D, Dejour D, the French Arthroscopy Society (SFA) (2013) Axial MRI index of patellar engagement: a new method to assess patellar instability. Orthop Traumatol Surg Res 99S:S399–S405. https://doi.org/10.1016/j.otsr.2013.10.006

    Article  Google Scholar 

  59. Hingelbaum S, Best R, Huth J, Wagner D, Bauer G, Mauch F (2014) The TT–TG Index: a new size adjusted measure method to determine the TT–TG distance. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-014-3204-1

  60. Mistovich RJ, Urwin JW, Fabricant PD, Lawrence JTR (2018) Patellar tendon-lateral trochlear ridge distance. Am J Sports Med. https://doi.org/10.1177/0363546518809982

  61. Deveci A, Cankaya D, Yilmaz S, Celen E, Sakman B, Bozkurt M (2016) Are metric parameters sufficient alone in evaluation of the patellar instability? New angular measuring parameters: the trochlear groove–patellar tendon angle and the trochlear groove–dome angle. J Orthop Surg. https://doi.org/10.1177/2309499016684498

  62. Camp CL, Stuart MJ, Krych AJ, Levy BA, Bond JR, Collins MS, Dahm DL (2013) CT and MRI measurements of tibial tubercle–trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med 41(8):1835–1340. https://doi.org/10.1177/0363546513484895

    Article  PubMed  Google Scholar 

  63. Arendt EA (2018) Reducing the tibial tuberosity–trochlear groove distance in patella stabilization procedure. Too much of a (good) thing? Arthroscopy 34(8):2427–2428. https://doi.org/10.1016/j.arthro.2018.05.028

    Article  PubMed  Google Scholar 

  64. Kraut B (1997) Krautov strojarski priručnik [Kraut’s mechanical engineering manual]. Axiom, Zagreb, p 25

  65. Donell S (2006) (iv) Patellofemoral dysfunction–extensor mechanism malalignment. Curr Orthop 20:103–111. https://doi.org/10.1016/j.cuor.2006.02.016

    Article  Google Scholar 

  66. Segal NA, Glass NA (2011) Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis? Phys Sports Med 39(4):44–50. https://doi.org/10.3810/psm.2011.11.1938

    Article  Google Scholar 

  67. Tanifuji O, Blaha JD, Kai S (2013) The vector of quadriceps pull is directed from the patella to the femoral neck. Clin Orthop Relat Res 471:1014–1020. https://doi.org/10.1007/s11999-012-2741-5

    Article  PubMed  Google Scholar 

  68. Paley D (2002) Principles of deformity correction. Springer-Verlag, Berlin, Heidelberg, New York

  69. Sikorski JM (2008) Alignment in total knee replacement. J Bone Joint Surg (Br) 90– B(9):1121–1127. https://doi.org/10.1302/0301-620X.90B9.20793

    Article  Google Scholar 

  70. Victor JMK (2010) Biomechanics of the knee and alignment. In: Scuderi GR, Tria AJ Jr (eds) The knee. A comprehensive review. World Scientific Publishing, Singapore, p 58. https://doi.org/10.1142/7411

  71. Merriam–Webster (2019) Merriam-Webster.com Dictionary. Merriam–Webster, Springfield. https://www.merriam-web-ster.com/dictionary/symbol?utm_campaign=sd&utm_medium=serp&utm_source=jsonld. Accessed 14 Sept 2019

  72. Tanifuji O, Blaha JD, Kai S, Sabb B (2012) The relationship of the vector of quadriceps function to the femur. ORS 2012 Annual meeting. Poster No. 0885. http://www.ors.org/Transactions/58/0885.pdf. Accessed 14 Sept 2019

  73. Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am 69:745–749

    Article  CAS  PubMed  Google Scholar 

  74. Balcarek P, Terwey A, Jung K, Walde TA, Frosch S, Schüttrumpf JP, Wachowski MM, Dathe H, Stürmer KM (2012) Influence of tibial slope asymmetry on femoral rotation in patients with lateral patellar instability. Knee Surg Sports Traumatol Arthrosc 21(9):2155–2163. https://doi.org/10.1007/s00167-012-2247-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fox AJ, Wanivenhaus F, Rodeo SA (2012) The basic science of the patella: structure, composition, and function. J Knee Surg 25:127–142. https://doi.org/10.1055/s-0032-1313741

    Article  PubMed  Google Scholar 

  76. Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) Is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470(1):45–53. https://doi.org/10.1007/s11999-011-1936-5

    Article  PubMed  Google Scholar 

  77. Saragaglia D, Banihachemi JJ, Refaie R (2020) Acute instability of the patella: is magnetic resonance imaging mandatory? Int Orthop (SICOT). https://doi.org/10.1007/s00264-020-04652-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinko Nizić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizić, D., Šimunović, M., Pavliša, G. et al. Tibial tuberosity–tibial intercondylar midpoint distance measured on computed tomography scanner is not biased during knee rotation and could be clinically more relevant than current measurement systems. International Orthopaedics (SICOT) 45, 959–970 (2021). https://doi.org/10.1007/s00264-020-04820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04820-6

Keywords

Navigation