Skip to main content

Advertisement

Log in

The history of bone marrow in orthopaedic surgery (part I trauma): trepanning, bone marrow injection in damage control resuscitation, and bone marrow aspiration to heal fractures

  • Orthopaedic Heritage
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

One of the oldest procedures performed by man is trepanning of the bone and yet it was only in the last 40 years that bone marrow aspiration has been used to treat nonunion disorders.

Material and methods

These advances were possible due to improvements in instruments and in techniques to make holes in the bone, an history that began with skull trephinations around 8000–10,000 years ago, and continued with sternum bone marrow injection for trauma resuscitation in the beginning of the twentieth century; this procedure had improved at the beginning of the twenty-first century to allow pelvis bone marrow aspiration for the treatment of nonunion.

Results

Trephined skulls from antiquity have been found in many parts of world, showing that trephining was ancient and widespread. Beginning with Neolithic period and the pre-Columbian Andean civilizations, the authors have traced the development of this surgical skill by describing the various surgical tools used to perform holes in the skull. These tools (trephines or trepan) were proposed at the end of the nineteenth century to study the bone marrow. At the beginning of the twentieth century, the sternum became the center of interest for the “in vivo” study of the bone marrow and the fluid injection in the sternum’s bone marrow was described for resuscitation from shock during the World War II. With the introduction of plastic catheters and improved cannulation techniques, the need for intraosseous infusion as an alternative route for intravenous access diminished and sometimes abandoned. However, during the mid-1980s, James Orlowski allowed renaissance of the use of intraosseous infusion for paediatric resuscitation. Since then, this technique has become widespread and is now recognized as an alternative to intravenous access in adult emergencies; particularly, the intraosseous access has received class IIA recommendation from the Advanced Trauma Life Support program supported by the American College of Surgeons Committee on Trauma and bone marrow infusion is now recommended for “Damage Control” resuscitation. Although the pelvis bone contains half of the body’s marrow volume, it was only in 1950 that the pelvis was proposed as a source for bone marrow aspiration and bone marrow-derived mesenchymal stem cells to improve healing of fractures.

Conclusion

It will be many years before doing holes in the bone as orthopaedic trauma procedure will be relegated to the annals of history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hernigou P (2015) Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka. Int Orthop 39(4):807–817. https://doi.org/10.1007/s00264-015-2716-8

    Article  PubMed  Google Scholar 

  2. Rubinstein MA (1950) The technic and diagnostic value of aspiration of bone marrow from the iliac crest. Ann Intern Med 32:1095–1908

    Article  CAS  PubMed  Google Scholar 

  3. Sarkar D, Philbeck T (2009) The use of multiple intraosseous catheters in combat casualty resuscitation. Mil Med 174:106–108

    Article  PubMed  Google Scholar 

  4. Bender GA (1966) Great moments in history trephining in ancient Peru. Parke, Davis and Company, Northwood Institute Press, Detroit, pp 20–25

    Google Scholar 

  5. Asenjo A (1963) Trephining among the American peoples: Inca trephination. In: Asenjo A (ed) Neurosurgical techniques. Charles C Thomas, Springfield, pp 20–26

    Google Scholar 

  6. Squier EG (1877) Peru: incidents of travel and exploration in the land of the Incas. Harper and Brothers, New York

    Google Scholar 

  7. Clower WT, Finger S (2001) Discovering trepanation: the contribution of Paul Broca. Neurosurgery 49(6):1417–1425

    Article  CAS  PubMed  Google Scholar 

  8. Broca P (1861) Remarks on the seat of the faculty of articulate language, followed by an observation of aphemia. Bull Soc Anat 36(330–357):398–407

    Google Scholar 

  9. Broca P (1865) On the seat of the faculty of articulate language in the left hemisphere of the brain. Bull Soc Anthropol 6:377–393

    Google Scholar 

  10. Morton SG (1839) Crania Americana: or a comparative view of the skulls of the various aboriginal nations of North and South America. Simpson, Marshall & Co, Philadelphia

    Google Scholar 

  11. Broca P (1867) A single case of trepanation in the Incas. Bull Soc Anthropol 2:403–408

    Google Scholar 

  12. Broca P (1867) Trépanation in the Incas. Bull Acad Méd (Paris) 32:866–872

    Google Scholar 

  13. Broca P (1873) On the crania from the cavern de l’Homme-Mort (Lozère) [in French]. Rev Anthropol 2:1–53

    Google Scholar 

  14. Broca P (1874) On the prehistoric trepanations [in French]. Bull Soc Anthropol 9:542–557

    Google Scholar 

  15. Broca P (1876) On the prehistoric trepanations [in French]. Bull Soc Anthropol 11:236–251

    Google Scholar 

  16. Prunières PB (1868) Excavation of the Lozère dolmen [in French]. Bull Soc Anthropol 3:317–320

    Google Scholar 

  17. Jackson R (1988) Doctors and diseases in the Roman empire. British Museum Press, a division of The British Museum Company Ltd, 46 Bloomsbury Street, London, pp 117–118

  18. González-Darder JM (2017) Cranial trepanation in primitive cultures. Neurocirugia (Astur) 28(1):28–40. https://doi.org/10.1016/j.neucir.2016.04.003

    Article  Google Scholar 

  19. Goodrich JT (2014) How to get in and out of the skull: from tumi to “hammer and chisel” to the Gigli saw and the osteoplastic flap. Neurosurg Focus 36(4):E6. https://doi.org/10.3171/2014.2

    Article  PubMed  Google Scholar 

  20. Ghedini G (1908) Per la patogenesi e per la diagnosi delle malattie del sangue e degli organi emopoietici, puntura esplorativa del midollo osseo, Clin. med. ital., Milano, xlvii, 724. 5

  21. Neumann E (1869) Uber die Bedeutung des Knochenmarkes fiir die Blutbildung, Arch, der Heilkunde, X, 68

  22. Seyfarth C (1923) Die Sternumtrepanation, eine einfache Methode zur diagnostischen Entnahme von Knochenmark bei Lebenden, Deutsch. med. Wchnschr., XLIX, 180

  23. Anirkin MI (1929) Die Intravitale Untersuchungsmethodik des Knochenmarks. Folia Haematologica, mLpz 38:233–240

  24. Drinker CK, Drinker KR, Lund CC (1922) The circulation in the mammalian bone marrow. Am J Phys 62:1–92

    Article  Google Scholar 

  25. Josefson A (1934) A new method of treatment—intraossal injections. Med Scand 81:550–564

    Article  Google Scholar 

  26. Tocantins LM, O’Neill JF (1941) Infusion of blood and other fluids into the general circulation via the bone marrow. Surg Gynecol Obstet 73:281–287

    Google Scholar 

  27. Tocantins LM (1940) Rapid absorption of substances injected into bone marrow. P Soc Exp Biol Med 45:292–296

    Article  CAS  Google Scholar 

  28. Tocantins L, O’Neill J (1940) Infusion of blood and other fluids into the circulation via the bone marrow. Proc Soc Exp Biol Med 45:782–783

    Article  Google Scholar 

  29. Tocantins LM, O’Neill JF, Prince AH (1941) Infusions of blood and other fluids via the bone marrow in traumatic shock and other forms of peripheral circulatory failure. Ann Surg 114:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bailey H, Carnow JM (1934) Br Med J 1:II

  31. Bailey H (1944) Bone marrow as a site for the reception of infusions, transfusion, and anaesthetic agents a review of the present position. Br Med J 5:181–182

    Article  Google Scholar 

  32. Orlowski JP (1980) Cardiopulmonary resuscitation in children. Pediatr Clin N Am 27:495–512

    Article  CAS  Google Scholar 

  33. Orlowski JP (1983) Pediatric cardiopulmonary resuscitation. Emerg Med Clin North Am 1:3–25

    CAS  PubMed  Google Scholar 

  34. Orlowski JP (1984) My kingdom for an intravenous line. Arch Pediatr Adolesc Med 138(9):803

    Article  CAS  Google Scholar 

  35. Cooper BR, Mahoney PF, Hodgetts TJ, Mellor A (2008) Intra-osseous access (EZIO®) for resuscitation: UK military combat experience. J R Army Med Corps 153:314–316

    Google Scholar 

  36. Fowler R, Gallagher J, Isaacs S, Ossman E, Pepe P, Wayne M (2007) The role of intraosseous vascular access in the out-of-hospital environment. Prehosp Emerg Care 11:63–66

    Article  PubMed  Google Scholar 

  37. Lairet J, Lairet K, Bums C et al (2012) Prehospital interventions performed in a combat zone: a prospective multicenter study. Prehosp Emerg Care 16(1):174

    Google Scholar 

  38. Dubick MA, Holcomb JB (2000) A review of intraosseous vascular access: current status and military application. Mil Med 165:552–559

    Article  CAS  PubMed  Google Scholar 

  39. Harcke HT, Crawley G, Mabry R, Mazuchowski E (2011) Placement of tibial intraosseous infusion devices. Mil Med 176(7):824–827

    Article  PubMed  Google Scholar 

  40. Navarro Suay R, Bartolome Cela E, Hernandez Abadia de Barbara A, Tamburri Bariain R, Rodriguez Moro C, Olivera Garcia J (2011) Intraosseous access for fluid therapy in combat situations: use by Spanish military medical staff in Afghanistan. Rev Esp Anestesiol Reanint 58(2):85–90

    Article  CAS  Google Scholar 

  41. Paxton JH, Knuth TE, Klausner HA (2009) Proximal humerus intraosseous infusion: a preferred emergency venous access. J Trauma 67(3):606–611

    Article  PubMed  Google Scholar 

  42. Cohen J, Duncan L, TrinerW et al (2015) Comparison of computed tomography image quality using intravenous vs. intraosseous contrast administration in swine. J Emerg Med 49(5):771–777

    Article  PubMed  Google Scholar 

  43. Knuth KE, Paxton JH, Myers D (2011) Intraosseous injection of iodinated tomography contrast agent in an adult blunt trauma patient. Ann Emerg Med 57(4):382–386

    Article  PubMed  Google Scholar 

  44. Holcomb JB (2003) Fluid resuscitation in modern combat casualty care: lessons learned from Somalia. J Trauma 54:S46–S51

    PubMed  Google Scholar 

  45. Wright C, Mahoney P, Hodgetts T, Russell R (2009) Fluid resuscitation: a Defense Medical Services Delphi study into current practice. J R Army Med Corps 155(2):99–104

    Article  CAS  PubMed  Google Scholar 

  46. Plancade D, Nadaud J, Lapierre M et al (2011) Feasibility of thoraco-abdominal CT with injection of iodinated contrast agent on sternal intraosseous catheter in an emergency department. Ann Fr Anesth Reanim 31(12):e283–e284

    Article  Google Scholar 

  47. Ahrens KL, Reeder SB, Keevil JG (2013) Successful computed tomography angiogram through tibial intraosseous access: a case report. J Emerg Med 45(2):182–185

    Article  PubMed  Google Scholar 

  48. Tan BK, Chong S, Koh ZX, Ong ME (2012) EZ-IO in the ED: an observational, prospective study comparing flow rates with proximal and distal tibia intraosseous access in adults. Am J Emerg Med 30:1602–1606

    Article  PubMed  Google Scholar 

  49. Clem M, Tierney P (2004) Intraosseous infusions via the calcaneus. Resuscitation. 62:107–112

    Article  PubMed  Google Scholar 

  50. Warren DW, Kissoon N, Sommerauer JF, Rieder MJ (1993) Comparison of fluid infusion rates among peripheral intravenous and humerus, femur, malleolus, and tibial intraosseous sites in normovolemic and hypovolemic piglets. Ann Emerg Med 22:183Y186

    Article  Google Scholar 

  51. Leitner SJ (1949) Bone marrow biopsy, haematology in the light of sternal puncture. In: Britton CJC, Neumark E (eds) Churchill Ltd, London, pp 5–10

  52. Whitby LEH, Britton CJH (1946) Disorders of the blood. J & A. Churchill Ltd, London, p 704

    Google Scholar 

  53. Bierman HR (1952) Bone marrow aspiration of the posterior iliac crest, an additional safe site. Calif Med 77:138–139

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McFarland W, Dameshek W (1958) Biopsy of the bone marrow with the Vim-Silverman needle. J Am Med Assoc 166:1464–1466

    Article  CAS  PubMed  Google Scholar 

  55. Ellis LD, Westerman PW (1964) Needle biopsy of the bone marrow. Arch Intern Med 114:213–221

    Article  CAS  PubMed  Google Scholar 

  56. Bordier F, Matrait H, Miravet L, Hioco D (1964) Mesure histologique de la masse et de la resorption des travees osseuses. Pathologie-Biologie 12:1238–1243

    CAS  Google Scholar 

  57. Jamshidi K, Swaim WR (1971) Bone marrow biopsy with unaltered architecture: a new biopsy device. J Lab Clin Med 77:335–342

    CAS  PubMed  Google Scholar 

  58. Parapia LA, Cox J, Brown G (1988) Powered biopsy needle, British Patent Application No. 8817008.9

  59. Islam A (1982) A new bone biopsy needle with core securing device. J Clin Pathol 35:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gianakos A, Ni A, Zambrana L et al (2016) Bone marrow aspirate concentrate in animal long bone healing: an analysis of basic science evidence. J Orthop Trauma 30(1):1–9

    Article  PubMed  Google Scholar 

  61. Hernigou P, Poignard A, Beaujean F et al (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437

    PubMed  Google Scholar 

  62. Singh AK, Shetty S, Saraswathy JJ et al (2013) Percutaneous autologous bone marrow injections for delayed or non-union of bones. J Orthop Surg (Hong Kong) 21(1):60–64

    Article  Google Scholar 

  63. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11):1699–1709

    Article  CAS  PubMed  Google Scholar 

  64. Hernigou P, Homma Y, Flouzat Lachaniette CH et al (2013) Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 37(11):2279–2287

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pierini M, Di Bella C, Dozza B et al (2013) The posterior iliac crest outperforms the anterior iliac crest when obtaining mesenchymal stem cells from bone marrow. J Bone Joint Surg Am 95(12):1101–1107

    Article  PubMed  Google Scholar 

  66. Hernigou J, Alves A, Homma Y et al (2014) Anatomy of the ilium for bone marrow aspiration: map of sectors and implication for safe trocar placement. Int Orthop 38(12):2585–2590

    Article  PubMed  Google Scholar 

  67. Hernigou J, Picard L, Alves A et al (2014) Understanding bone safety zones during bone marrow aspiration from the iliac crest: the sector rule. Int Orthop 38(11):2377–2384

    Article  PubMed  Google Scholar 

  68. Bain BJ (2003) Bone marrow biopsy morbidity and mortality. Br J Haematol 121(6):949–951

    Article  PubMed  Google Scholar 

  69. Hernigou P, Desroches A, Queinnec S et al (2014) Morbidity of graft harvesting versus bone marrow aspiration in cell regenerative therapy. Int Orthop 38(9):1855–1860

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Hernigou.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernigou, P. The history of bone marrow in orthopaedic surgery (part I trauma): trepanning, bone marrow injection in damage control resuscitation, and bone marrow aspiration to heal fractures. International Orthopaedics (SICOT) 44, 795–808 (2020). https://doi.org/10.1007/s00264-020-04506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04506-z

Keywords

Navigation