Skip to main content
Log in

Network meta-analysis of knee outcomes following anterior cruciate ligament reconstruction with various types of tendon grafts

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Various grafts were selected for restoring knee stability and regaining pre-injury activity levels after anterior cruciate ligament (ACL) rupture. This review aimed to compare the short-term knee outcomes of different tendon grafts for primary ACL reconstruction (ACLR).

Methods

Databases of PubMed, Embase, and CENTRAL were retrieved for identifying the published RCT comparing the short-term (≤ 2 years) knee outcomes of different tendon grafts for ACLR. The main outcomes include the International Knee Documentation Committee (IKDC) subjective and objective scores, side-to-side difference on knee laxity, Lachman test, pivot-shift test, Lysholm score, Tegner score, all recorded complications and graft re-ruptures.

Results

A total of 32 trials involving 2962 patients and 17 grafts were included. Superior IKDC subjective score was found for quadriceps tendon autograft (QTB) when compared with autografts including bone-patellar tendon-bone (BPTB), four-strand hamstring tendon (4S-HT), and double-bundle HT. The 4S-HT autograft was associated with poorer anteroposterior and rotational knee stability than the BPTB autograft. Artificial ligament also was found to provide lower knee stability compared with the autografts including the BPTB, patellar tendon, 4S-HT, 4S-HT with preserved tibial insertion, 6S-HT, and four-strand semitendinosus tendon. Additionally, the BPTB allograft showed a statistically higher knee laxity than 6S-HT allograft, while no difference was found between the genuine autografts and non-irradiated allografts.

Conclusions

QTB was recommended to be used even over the BPTB and 4S-HT autografts. BPTB autograft was more effective on restoring the knee stability than 4S-HT autograft. Non-irradiated allografts could be safely used as alternatives to autografts. However, artificial ligaments were not recommended for primary ACLR for significantly increased risk of knee laxity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herzog MM, Marshall SW, Lund JL, Pate V, Mack CD, Spang JT (2018) Trends in incidence of ACL reconstruction and concomitant procedures among commercially insured individuals in the United States, 2002-2014. Sports Health 10:523–531. https://doi.org/10.1177/1941738118803616

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr et al (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42:2363–2370. https://doi.org/10.1177/0363546514542796

    Article  PubMed  Google Scholar 

  3. Caborn DN, Johnson BM (1993) The natural history of the anterior cruciate ligament-deficient knee. A review. Clin Sports Med 12:625–636

    CAS  PubMed  Google Scholar 

  4. Buss DD, Min R, Skyhar M, Galinat B, Warren RF, Wickiewicz TL (1995) Nonoperative treatment of acute anterior cruciate ligament injuries in a selected group of patients. Am J Sports Med 23:160–165. https://doi.org/10.1177/036354659502300206

    Article  CAS  PubMed  Google Scholar 

  5. Clancy WG Jr, Ray JM, Zoltan DJ (1988) Acute tears of the anterior cruciate ligament. Surgical versus conservative treatment. J Bone Joint Surg Am 70:1483–1488

    Article  Google Scholar 

  6. Hardy A, Casabianca L, Andrieu K, Baverel L, Noailles T; Junior French Arthroscopy Society (2017) Complications following harvesting of patellar tendon or hamstring tendon grafts for anterior cruciate ligament reconstruction: systematic review of literature. Orthop Traumatol Surg Res 103:S245–S248. https://doi.org/10.1016/j.otsr.2017.09.002

    Article  Google Scholar 

  7. Schandl K, Horváthy DB, Doros A, Majzik E, Schwarz CM, Csönge L et al (2016) Bone-Albumin filling decreases donor site morbidity and enhances bone formation after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autografts. Int Orthop 40(10):2097–2104. https://doi.org/10.1007/s00264-016-3246-8

    Article  PubMed  Google Scholar 

  8. Rosenberg TD, Franklin J, Baldwin GN, Nelson KA (1992) Extensor mechanism function after patellar tendon graft harvest for anterior cruciate ligament reconstruction. Am J Sports Med 20:519525. https://doi.org/10.1177/036354659202000506

    Article  Google Scholar 

  9. DeFroda SF, Karamchedu NP, Owens BD, Bokshan SL, Sullivan K, Fadale PD et al (2018) Tibial tunnel widening following anterior cruciate ligament reconstruction: a retrospective seven-year study evaluating the effects of initial graft tensioning and graft selection. Knee 25:1107–1114. https://doi.org/10.1016/j.knee.2018.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marshall J, Warren R, Wickiewicz T, Reider B (1979) The anterior cruciate ligament: a technique of repair and reconstruction. Clin Orthop Relat Res:97–106

  11. Yasuda K, Ohkoshi Y, Tanabe Y, Kaneda K (1992) Quantitative evaluation of knee instability and muscle strength after anterior cruciate ligament reconstruction using patellar and quadriceps tendon. Am J Sports Med 20:471–475. https://doi.org/10.1177/036354659202000420

    Article  CAS  PubMed  Google Scholar 

  12. Hurley ET, Calvo-Gurry M, Withers D, Farrington SK, Moran R, Moran CJ (2018) Quadriceps tendon autograft in anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 34:1690–1698. https://doi.org/10.1016/j.arthro.2018.01.046

    Article  PubMed  Google Scholar 

  13. Foster TE, Wolfe BL, Ryan S, Silvestri L, Kaye EK (2010) Does the graft source really matter in the outcome of patients undergoing anterior cruciate ligament reconstruction? An evaluation of autograft versus allograft reconstruction results: a systematic review. Am J Sports Med 38:189–199. https://doi.org/10.1177/0363546509356530

    Article  PubMed  Google Scholar 

  14. Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C (2000) Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18:426–431. https://doi.org/10.1002/jor.1100180314

    Article  CAS  PubMed  Google Scholar 

  15. Wang HD, Zhu YB, Wang TR, Zhang WF, Zhang YZ (2018) Irradiated allograft versus autograft for anterior cruciate ligament reconstruction: a meta-analysis and systematic review of prospective studies. Int J Surg 49:45–55. https://doi.org/10.1016/j.ijsu.2017.12.007

    Article  PubMed  Google Scholar 

  16. Tiefenboeck TM, Thurmaier E, Tiefenboeck MM et al (2015) Clinical and functional outcome after anterior cruciate ligament reconstruction using the LARS™ system at a minimum follow-up of 10 years. Knee 22:565–568. https://doi.org/10.1016/j.knee.2015.06.003

    Article  PubMed  Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  18. Higgins JPT, Altman DG, Gøtzsche PC (2011) Cochrane bias methods GroupCochrane statistical methods group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

    Article  Google Scholar 

  19. Dias S, Welton NJ, Caldwell DM, Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29:932–944. https://doi.org/10.1002/sim.3767

    Article  CAS  PubMed  Google Scholar 

  20. Maletis GB, Cameron SL, Tengan JJ, Burchette RJ (2007) A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med 35:384–394. https://doi.org/10.1177/0363546506294361

    Article  PubMed  Google Scholar 

  21. Beynnon BD, Johnson RJ, Fleming BC et al (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 84-A:1503–1513

    Article  Google Scholar 

  22. Laoruengthana A, Pattayakorn S, Chotanaputhi T, Kosiyatrakul A (2009) Clinical comparison between six-strand hamstring tendon and patellar tendon autograft in arthroscopic anterior cruciate ligament reconstruction: a prospective, randomized clinical trial. J Med Assoc Thai 92:491–497

    PubMed  Google Scholar 

  23. Aune AK, Holm I, Risberg MA, Jensen HK, Steen H (2001) (2001) Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction. A randomized study with two-year follow-up. Am J Sports Med 29:722–728. https://doi.org/10.1177/03635465010290060901

    Article  CAS  PubMed  Google Scholar 

  24. Barenius B, Nordlander M, Ponzer S, Tidermark J, Eriksson K (2010) Quality of life and clinical outcome after anterior cruciate ligament reconstruction using patellar tendon graft or quadrupled semitendinosus graft: an 8-year follow-up of a randomized controlled trial. Am J Sports Med 38:1533–1541. https://doi.org/10.1177/0363546510369549

    Article  PubMed  Google Scholar 

  25. Dai C, Wang F, Wang X, Wang R, Wang S, Tang S (2016) Arthroscopic single-bundle anterior cruciate ligament reconstruction with six-strand hamstring tendon allograft versus bone-patellar tendon-bone allograft. Knee Surg Sports Traumatol Arthrosc 24:2915–2922. https://doi.org/10.1007/s00167-015-3569-9

    Article  PubMed  Google Scholar 

  26. Drogset JO, Strand T, Uppheim G, Odegård B, Bøe A, Grøntvedt T (2010) Autologous patellar tendon and quadrupled hamstring grafts in anterior cruciate ligament reconstruction: a prospective randomized multicenter review of different fixation methods. Knee Surg Sports Traumatol Arthrosc 18:1085–1093. https://doi.org/10.1007/s00167-009-0996-5

    Article  PubMed  Google Scholar 

  27. Ejerhed L, Kartus J, Sernert N, Köhler K, Karlsson J (2003) Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? A prospective randomized study with a two-year follow-up. Am J Sports Med 31:19–25. https://doi.org/10.1177/03635465030310011401

    Article  PubMed  Google Scholar 

  28. Feller JA, Webster KE, Gavin B (2001) Early post-operative morbidity following anterior cruciate ligament reconstruction: patellar tendon versus hamstring graft. Knee Surg Sports Traumatol Arthrosc 9:260–266. https://doi.org/10.1007/s001670100216

    Article  CAS  PubMed  Google Scholar 

  29. Feller JA, Webster KE (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31:564–573. https://doi.org/10.1177/03635465030310041501

    Article  PubMed  Google Scholar 

  30. Ghalayini SR, Helm AT, Bonshahi AY, Lavender A, Johnson DS, Smith RB (2010) Arthroscopic anterior cruciate ligament surgery: results of autogenous patellar tendon graft versus the Leeds-Keio synthetic graft five year follow-up of a prospective randomised controlled trial. Knee 17:334–339. https://doi.org/10.1016/j.knee.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  31. Gifstad T, Sole A, Strand T, Uppheim G, Grøntvedt T, Drogset JO (2013) Long-term follow-up of patellar tendon grafts or hamstring tendon grafts in endoscopic ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 21:576–583. https://doi.org/10.1007/s00167-012-1947-0

    Article  PubMed  Google Scholar 

  32. Gobbi A, Francisco R (2006) Factors affecting return to sports after anterior cruciate ligament reconstruction with patellar tendon and hamstring graft: a prospective clinical investigation. Knee Surg Sports Traumatol Arthrosc 14:1021–1028. https://doi.org/10.1007/s00167-006-0050-9

    Article  PubMed  Google Scholar 

  33. Gupta R, Bahadur R, Malhotra A et al (2017) Outcome of hamstring autograft with preserved insertions compared with free hamstring autograft in anterior cruciate ligament surgery at 2-year follow-up. Arthroscopy 33:2208–2216. https://doi.org/10.1016/j.arthro.2017.06.040

    Article  PubMed  Google Scholar 

  34. Beard DJ, Anderson JL, Davies S, Price AJ, Dodd CA (2001) Hamstrings vs. patella tendon for anterior cruciate ligament reconstruction: a randomised controlled trial. Knee 8:45–50

    Article  CAS  Google Scholar 

  35. Heijne A, Werner S (2010) A 2-year follow-up of rehabilitation after ACL reconstruction using patellar tendon or hamstring tendon grafts: a prospective randomised outcome study. Knee Surg Sports Traumatol Arthrosc 18:805–813. https://doi.org/10.1007/s00167-009-0961-3

    Article  PubMed  Google Scholar 

  36. Iliopoulos E, Galanis N, Zafeiridis A et al (2017) (2017) Anatomic single-bundle anterior cruciate ligament reconstruction improves walking economy: hamstrings tendon versus patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 25:3155–3162. https://doi.org/10.1007/s00167-016-4229-4

    Article  PubMed  Google Scholar 

  37. Jansson KA, Linko E, Sandelin J, Harilainen A (2003) A prospective randomized study of patellar versus hamstring tendon autografts for anterior cruciate ligament reconstruction. Am J Sports Med 31:12–18. https://doi.org/10.1177/03635465030310010501

    Article  PubMed  Google Scholar 

  38. Kang HJ, Wang XJ, Wu CJ, Cao JH, Yu DH, Zheng ZM (2015) Single-bundle modified patellar tendon versus double-bundle tibialis anterior allograft ACL reconstruction: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 23:2244–2249. https://doi.org/10.1007/s00167-014-3021-6

    Article  PubMed  Google Scholar 

  39. Kautzner J, Kos P, Hanus M, Trc T, Havlas V (2015) A comparison of ACL reconstruction using patellar tendon versus hamstring autograft in female patients: a prospective randomised study. Int Orthop 39:125–130. https://doi.org/10.1007/s00264-014-2495-7

    Article  PubMed  Google Scholar 

  40. Lawhorn KW, Howell SM, Traina SM, Gottlieb JE, Meade TD, Freedberg HI (2012) The effect of graft tissue on anterior cruciate ligament outcomes: a multicenter, prospective, randomized controlled trial comparing autograft hamstrings with fresh-frozen anterior tibialis allograft. Arthroscopy 28:1079–1086. https://doi.org/10.1016/j.arthro.2012.05.010

    Article  PubMed  Google Scholar 

  41. Laxdal G, Kartus J, Hansson L, Heidvall M, Ejerhed L, Karlsson J (2005) A prospective randomized comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction. Arthroscopy 21:34–42. https://doi.org/10.1016/j.arthro.2004.09.014

    Article  PubMed  Google Scholar 

  42. Shaieb MD, Kan DM, Chang SK, Marumoto JM, Richardson AB (2002) A prospective randomized comparison of patellar tendon versus semitendinosus and gracilis tendon autografts for anterior cruciate ligament reconstruction. Am J Sports Med 30:214–220. https://doi.org/10.1177/03635465020300021201

    Article  PubMed  Google Scholar 

  43. Mohtadi N, Chan D, Barber R, Oddone Paolucci E (2015) A randomized clinical trial comparing patellar tendon, hamstring tendon, and double-bundle ACL reconstructions: patient-reported and clinical outcomes at a minimal 2-year follow-up. Clin J Sport Med 25:321–331. https://doi.org/10.1097/JSM.0000000000000165

    Article  PubMed  Google Scholar 

  44. Volpi P, Cervellin M, Denti M et al (2010) ACL reconstruction in sports active people: transtibial DB technique with ST/G vs. transtibial SB technique with BPTB: preliminary results. Injury 41:1168–1171. https://doi.org/10.1016/j.injury.2010.09.029

    Article  PubMed  Google Scholar 

  45. Wipfler B, Donner S, Zechmann CM, Springer J, Siebold R, Paessler HH (2011) Anterior cruciate ligament reconstruction using patellar tendon versus hamstring tendon: a prospective comparative study with 9-year follow-up. Arthroscopy 27:653–665. https://doi.org/10.1016/j.arthro.2011.01.015

    Article  PubMed  Google Scholar 

  46. Webster KE, Feller JA, Hameister KA (2001) Bone tunnel enlargement following anterior cruciate ligament reconstruction: a randomised comparison of hamstring and patellar tendon grafts with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 9:86–91. https://doi.org/10.1007/s001670100191

    Article  CAS  PubMed  Google Scholar 

  47. Noh JH, Yi SR, Song SJ, Kim SW, Kim W (2011) Comparison between hamstring autograft and free tendon Achilles allograft: minimum 2-year follow-up after anterior cruciate ligament reconstruction using EndoButton and Intrafix. Knee Surg Sports Traumatol Arthrosc 19:816–822. https://doi.org/10.1007/s00167-010-1388-6

    Article  PubMed  Google Scholar 

  48. Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK (2016) Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. A 15-year follow-up of a randomized controlled trial. Am J Sports Med 44:83–90. https://doi.org/10.1177/0363546515611886

    Article  PubMed  Google Scholar 

  49. McRae S, Leiter J, McCormack R, Old J, MacDonald P (2013) Ipsilateral versus contralateral hamstring grafts in anterior cruciate ligament reconstruction: a prospective randomized trial. Am J Sports Med 41:2492–2499. https://doi.org/10.1177/0363546513499140

    Article  PubMed  Google Scholar 

  50. Lund B, Nielsen T, Faunø P, Christiansen SE, Lind M (2014) Is quadriceps tendon a better graft choice than patellar tendon? a prospective randomized study. Arthroscopy 30:593–598. https://doi.org/10.1016/j.arthro.2014.01.012

    Article  PubMed  Google Scholar 

  51. Eriksson K, Anderberg P, Hamberg P, Olerud P, Wredmark T (2001) There are differences in early morbidity after ACL reconstruction when comparing patellar tendon and semitendinosus tendon graft: a prospective randomized study of 107 patients. Scand J Med Sci Sports 11:170–177. https://doi.org/10.1046/j.1524-4725.2001.110307.x

    Article  CAS  PubMed  Google Scholar 

  52. Li S, Su W, Zhao J et al (2011) A meta-analysis of hamstring autografts versus bone-patellar tendon-bone autografts for reconstruction of the anterior cruciate ligament. Knee 18:287–293. https://doi.org/10.1016/j.knee.2010.08.002

    Article  PubMed  Google Scholar 

  53. Li S, Chen Y, Lin Z, Cui W, Zhao J, Su W (2012) A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone-patellar tendon-bone autografts for the reconstruction of the anterior cruciate ligament. Arch Orthop Trauma Surg 132:1287–1297. https://doi.org/10.1007/s00402-012-1532-5

    Article  PubMed  Google Scholar 

  54. Markolf KL, Burchfield DM, Shapiro MM, Cha CW, Finerman GA, Slauterbeck JL (1996) Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part II: forces in the graft compared with forces in the intact ligament. J Bone Joint Surg Am 78:1728–1734. https://doi.org/10.2106/00004623-199611000-00014

    Article  CAS  PubMed  Google Scholar 

  55. Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557. https://doi.org/10.2106/00004623-199904000-00013

    Article  CAS  PubMed  Google Scholar 

  56. Cavaignac E, Pailhé R, Reina N, Murgier J, Laffosse JM, Chiron P, Swider P (2016) Can the gracilis replace the anterior cruciate ligament in the knee? A biomechanical study. Int Orthop 40(8):1647–1653. https://doi.org/10.1007/s00264-015-3027-9

    Article  PubMed  Google Scholar 

  57. Greis PE, Burks RT, Bachus K, Luker MG (2001) The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med 29:493–497. https://doi.org/10.1177/03635465010290041901

    Article  CAS  PubMed  Google Scholar 

  58. Petersen W, Laprell H (2000) Insertion of autologous tendon grafts to the bone: a histological and immunohistochemical study of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 8:26–31. https://doi.org/10.1007/s001670050006

    Article  CAS  PubMed  Google Scholar 

  59. Nebelung W, Becker R, Merkel M, Ropke M (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction with semitendinosus tendon using Endobutton fixation on the femoral side. Arthroscopy 14:810–815

    Article  CAS  Google Scholar 

  60. Geib TM, Shelton WR, Phelps RA, Clark L (2009) Anterior cruciate ligament reconstruction using quadriceps tendon autograft: intermediate-term outcome. Arthroscopy 25:1408–1414. https://doi.org/10.1016/j.arthro.2009.06.004

    Article  PubMed  Google Scholar 

  61. DeAngelis JP, Fulkerson JP (2007) Quadriceps tendond-a reliable alternative for reconstruction of the anterior cruciate ligament. Clin Sports Med 26:587–596. https://doi.org/10.1016/j.csm.2007.06.005

    Article  PubMed  Google Scholar 

  62. Han HS, Seong SC, Lee S, Lee MC (2008) Anterior cruciate ligament reconstruction: quadriceps versus patellar autograft. Clin Orthop Relat Res 466:198–204. https://doi.org/10.1007/s11999-007-0015-4

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kartus J, Stener S, Lindahl S, Engström B, Eriksson BI, Karlsson J (1997) Factors affecting donor-site morbidity after anterior cruciate ligament reconstruction using bone-patellar tendon-bone autografts. Knee Surg Sports Traumatol Arthrosc 5:222–228. https://doi.org/10.1053/ar.1999.v15.015057001

    Article  CAS  PubMed  Google Scholar 

  64. Kim SJ, Kim HK, Lee YT (1997) Arthroscopic anterior cruciate ligament reconstruction using autogenous hamstring tendon graft without detachment of the tibial insertion. Arthroscopy 13:656–660

    Article  CAS  Google Scholar 

  65. Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC (2005) Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy 21:791–803. https://doi.org/10.1016/j.arthro.2005.04.107

    Article  PubMed  Google Scholar 

  66. Zeng C, Gao SG, Li H et al (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 32:153-163.e18. https://doi.org/10.1016/j.arthro.2015.07.027

    Article  Google Scholar 

  67. Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41:2439–2448. https://doi.org/10.1177/0363546513484127

    Article  PubMed  Google Scholar 

  68. Mariscalco MW, Magnussen RA, Mehta D, Hewett TE, Flanigan DC, Kaeding CC (2014) Autograft versus nonirradiated allograft tissue for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 42:492–499. https://doi.org/10.1177/0363546513497566

    Article  PubMed  Google Scholar 

  69. Mardani-Kivi M, Karimi-Mobarakeh M, Keyhani S, Saheb-Ekhtiari K, Hashemi-Motlagh K, Sarvi A (2016) Hamstring tendon autograft versus fresh-frozen tibialis posterior allograft in primary arthroscopic anterior cruciate ligament reconstruction: a retrospective cohort study with three to six years follow-up. Int Orthop 40(9):1905–1911. https://doi.org/10.1007/s00264-016-3164-9

    Article  PubMed  Google Scholar 

  70. Schepsis AA, Greenleaf J (1990) Prosthetic materials for anterior cruciate ligament reconstruction. Orthop Rev 19:984–991

    CAS  PubMed  Google Scholar 

  71. Ochi M, Yamanaka T, Sumen Y, Ikuta Y (1993) Arthroscopic and histological evaluation of anterior cruciate ligaments reconstructed with the Leeds-Keio ligament. Arthroscopy 9:387–393

    Article  CAS  Google Scholar 

  72. Ryan WG, Banks AJ (1994) A failure mechanism of Leeds-Keio ligaments. Injury 25:443–445

    Article  CAS  Google Scholar 

  73. Ćuti T, Antunović M, Marijanović I, Ivković A, Vukasović A, Matić I, Pećina M, Hudetz D (2017) Capacity of muscle derived stem cells and pericytes to promote tendon graft integration and ligamentization following anterior cruciate ligament reconstruction. Int Orthop 41(6):1189–1198. https://doi.org/10.1007/s00264-017-3437-y

    Article  PubMed  Google Scholar 

  74. Snoj Ž, Zupanc O, Stražar K, Salapura V (2017) A descriptive study of potential effect of anterior tibial translation, femoral tunnel and anterior cruciate ligament graft inclination on clinical outcome and degenerative changes. Int Orthop 41(4):789–796. https://doi.org/10.1007/s00264-016-3386-x

    Article  PubMed  Google Scholar 

  75. Guzzini M, Mazza D, Fabbri M, Lanzetti R, Redler A, Iorio C, Monaco E, Ferretti A (2016) Extra-articular tenodesis combined with an anterior cruciate ligament reconstruction in acute anterior cruciate ligament tear in elite female football players. Int Orthop 40(10):2091–2096. https://doi.org/10.1007/s00264-016-3261-9

    Article  PubMed  Google Scholar 

  76. Andrei BI, Niculescu M, Popescu G (2016) Position of anterior cruciate ligament after single-bundle arthroscopic reconstruction. Int Orthop 40(2):393–397. https://doi.org/10.1007/s00264-015-2964-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-cheng Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

(PNG 58 kb)

High resolution image (TIF 291 kb)

Fig. S2A

(PNG 434 kb)

High resolution image (TIF 3457 kb)

Fig. S2B

(PNG 154 kb)

High resolution image (TIF 1199 kb)

Fig. S2C

(PNG 221 kb)

High resolution image (TIF 1644 kb)

Fig. S2D

(PNG 503 kb)

High resolution image (TIF 2243 kb)

Fig. S2E

(PNG 398 kb)

High resolution image (TIF 3147 kb)

Fig. S2F

(PNG 260 kb)

High resolution image (TIF 2049 kb)

Fig. S2G

(PNG 366 kb)

High resolution image (TIF 2752 kb)

Fig. S2H

(PNG 377 kb)

High resolution image (TIF 2754 kb)

Fig. S2I

(PNG 959 kb)

High resolution image (TIF 5675 kb)

Fig. S2J

(PNG 468 kb)

High resolution image (TIF 2958 kb)

Fig. S3

(PNG 578 kb)

High resolution image (TIF 3213 kb)

Fig. S4

(PNG 487 kb)

High resolution image (TIF 2879 kb)

Fig. S5

(PNG 418 kb)

High resolution image (TIF 2318 kb)

Fig. S6

(PNG 260 kb)

High resolution image (TIF 1932 kb)

Fig. S7

(PNG 387 kb)

High resolution image (TIF 2158 kb)

Table S1

(DOC 170 kb)

Table S2

(DOCX 27 kb)

Table S3

(DOCX 28 kb)

Table S4

(DOC 28 kb)

Table S5

(DOC 91 kb)

ESM 1

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xg., Wang, F., He, X. et al. Network meta-analysis of knee outcomes following anterior cruciate ligament reconstruction with various types of tendon grafts. International Orthopaedics (SICOT) 44, 365–380 (2020). https://doi.org/10.1007/s00264-019-04417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-019-04417-8

Keywords

Navigation