Skip to main content

Advertisement

Log in

The biological basis for concentrated iliac crest aspirate to enhance core decompression in the treatment of osteonecrosis

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Core decompression is a surgical procedure that is capable of salvaging the patient’s own natural joint, if the operation is performed in the early stages of osteonecrosis, in which the articular surface has not collapsed. The addition of concentrated cells, aspirated from the iliac crest, to the core tract has been shown to enhance the viability of the femoral head, although large, prospective, randomized, blinded multicentre studies are lacking. The rationale for adding these cells to the core decompression tract is to provide osteoprogenitor and vascular progenitor cells to the area of decompressed dead bone, in order to facilitate tissue regeneration and repair. It has become increasingly evident that vast discrepancies exist in different series in regard to the criteria for patient selection, the surgical technique of core decompression, the methods for harvesting, processing, and injecting the cells, and the methodology for determining success or failure in a specific patient cohort. This paper reviews the salient points relevant to the treatment of osteonecrosis by core decompression with addition of concentrated iliac crest aspirates and poses important questions regarding the future successful application of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mont MA, Carbone JJ, Fairbank AC (1996) Core decompression versus nonoperative management for osteonecrosis of the hip. Clin Orthop Relat Res 324:169–178

    Article  Google Scholar 

  2. Mont MA, Cherian JJ, Sierra RJ, Jones LC, Lieberman JR (2015) Nontraumatic osteonecrosis of the femoral head: where do we stand today? A ten-year update. J Bone Joint Surg Am 97(19):1604–1627

    Article  PubMed  Google Scholar 

  3. Moya-Angeler J, Gianakos AL, Villa JC, Ni A, Lane JM (2015) Current concepts on osteonecrosis of the femoral head. World J Orthop 6(8):590–601

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chughtai M, Piuzzi NS, Khlopas A, Jones LC, Goodman SB, Mont MA (2017) An evidence-based guide to the treatment of osteonecrosis of the femoral head. Bone Joint J 99-B(10):1267–1279

    Article  PubMed  CAS  Google Scholar 

  5. Bozic KJ, Zurakowski D, Thornhill TS (1999) Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg Am 81(2):200–209

    Article  PubMed  CAS  Google Scholar 

  6. Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23

    Article  Google Scholar 

  7. Hernigou P, Flouzat-Lachaniette CH, Delambre J, Poignard A, Allain J, Chevallier N, Rouard H (2015) Osteonecrosis repair with bone marrow cell therapies: state of the clinical art. Bone 70:102–109

    Article  PubMed  Google Scholar 

  8. Houdek MT, Wyles CC, Martin JR, Sierra RJ (2014) Stem cell treatment for avascular necrosis of the femoral head: current perspectives. Stem Cells Cloning Adv Appl 7:65–70

    Google Scholar 

  9. Papakostidis C, Tosounidis TH, Jones E, Giannoudis PV (2016) The role of “cell therapy” in osteonecrosis of the femoral head. A systematic review of the literature and meta-analysis of 7 studies. Acta Orthop 87(1):72–78

    Article  PubMed  Google Scholar 

  10. Goodman SB, Hwang KL (2015) Treatment of secondary osteonecrosis of the knee with local debridement and osteoprogenitor cell grafting. J Arthroplast 30(11):1892–1896

    Article  Google Scholar 

  11. Lieberman JR, Varthi AG, Polkowski GG 2nd (2014) Osteonecrosis of the knee—which joint preservation procedures work? J Arthroplast 29(1):52–56

    Article  Google Scholar 

  12. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    PubMed  CAS  Google Scholar 

  13. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    Article  PubMed  CAS  Google Scholar 

  14. Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437

    PubMed  Google Scholar 

  16. Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43(1):40–45

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11):1699–1709

    Article  PubMed  CAS  Google Scholar 

  18. Patterson TE, Boehm C, Nakamoto C, Rozic R, Walker E, Piuzzi NS, Muschler GF (2017) The efficiency of bone marrow aspiration for the harvest of connective tissue progenitors from the human iliac crest. J Bone Joint Surg Am 99(19):1673–1682

    Article  PubMed  Google Scholar 

  19. Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19(1):117–125

    Article  PubMed  CAS  Google Scholar 

  20. Piuzzi NS, Chahla J, Jiandong H, Chughtai M, LaPrade RF, Mont MA, Muschler GF, Pascual-Garrido C (2017) Analysis of cell therapies used in clinical trials for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(8):2612–2618

    Article  Google Scholar 

  21. Piuzzi NS, Chahla J, Schrock JB, LaPrade RF, Pascual-Garrido C, Mont MA, Muschler GF (2017) Evidence for the use of cell-based therapy for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(5):1698–1708

    Article  Google Scholar 

  22. Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, Flouzat-Lachaniette CH (2016) Stem cell therapy for the treatment of hip osteonecrosis: a 30-year review of progress. Clin Orthop Surg 8(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thoesen MS, Berg-Foels WS, Stokol T, Rassnick KM, Jacobson MS, Kevy SV, Todhunter RJ (2006) Use of a centrifugation-based, point-of-care device for production of canine autologous bone marrow and platelet concentrates. Am J Vet Res 67(10):1655–1661

    Article  PubMed  Google Scholar 

  24. Hegde V, Shonuga O, Ellis S, Fragomen A, Kennedy J, Kudryashov V, Lane JM (2014) A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma 28(10):591–598

    Article  PubMed  Google Scholar 

  25. Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181

    Article  PubMed  CAS  Google Scholar 

  26. Caralla T, Boehm C, Hascall V, Muschler G (2012) Hyaluronan as a novel marker for rapid selection of connective tissue progenitors. Ann Biomed Eng 40(12):2559–2567

    Article  PubMed  Google Scholar 

  27. Caralla T, Joshi P, Fleury S, Luangphakdy V, Shinohara K, Pan H, Boehm C, Vasanji A, Hefferan TE, Walker E et al (2013) In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Eng A 19(1–2):125–134

    Article  CAS  Google Scholar 

  28. Joshi P, Williams PS, Moore LR, Caralla T, Boehm C, Muschler G, Zborowski M (2015) Circular Halbach array for fast magnetic separation of hyaluronan-expressing tissue progenitors. Anal Chem 87(19):9908–9915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, Davros WJ, Easley KA, Powell KA (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432:242–251

    Article  Google Scholar 

  30. Luangphakdy V, Boehm C, Pan H, Herrick J, Zaveri P, Muschler GF (2016) Assessment of methods for rapid intraoperative concentration and selection of marrow-derived connective tissue progenitors for bone regeneration using the canine femoral multidefect model. Tissue Eng A 22(1–2):17–30

    Article  CAS  Google Scholar 

  31. Bunpetch V, Wu H, Zhang S, Ouyang H (2017) From “bench to bedside”: current advancement on large-scale production of mesenchymal stem cells. Stem Cells Dev 26(22):1662–1673

    Article  PubMed  Google Scholar 

  32. Lambrechts T, Sonnaert M, Schrooten J, Luyten FP, Aerts JM, Papantoniou I (2016) Large-scale mesenchymal stem/stromal sell expansion: a visualization tool for bioprocess comparison. Tissue Eng B Rev 22(6):485–498

    Article  Google Scholar 

  33. Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, Wagner W, Meisel R, Pavel P, Tonn T et al (2015) Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17(2):128–139

    Article  PubMed  CAS  Google Scholar 

  34. Sensebe L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22(1):19–26

    Article  PubMed  Google Scholar 

  35. Sensebe L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4(3):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Arlet J, Ficat P, Sebbag D (1969) The use of measurement of intramedullary pressure in the greater trochanter in man, particularly in the diagnosis of osteonecrosis of the femoral head. Rev Rhum Mal Osteoartic 35(5):250–256

    Google Scholar 

  37. Mao Q, Wang W, Xu T, Zhang S, Xiao L, Chen D, Jin H, Tong P (2015) Combination treatment of biomechanical support and targeted intra-arterial infusion of peripheral blood stem cells mobilized by granulocyte-colony stimulating factor for the osteonecrosis of the femoral head: a randomized controlled clinical trial. J Bone Miner Res 30(4):647–656

    Article  PubMed  PubMed Central  Google Scholar 

  38. Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17(6):939–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Prockop DJ, Kota DJ, Bazhanov N, Reger RL (2010) Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 14(9):2190–2199

    Article  PubMed  PubMed Central  Google Scholar 

  40. Caplan AI (2017) New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res 35(6):1151–1159

    Article  PubMed  Google Scholar 

  41. Caplan AI (2015) Adult mesenchymal stem cells: when, where, and how. Stem Cells Int 2015:628767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Connolly JF, Guse R, Tiedeman J, Dehne R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 266:259–270

    Google Scholar 

  43. Hossain MA, Chowdhury T, Bagul A (2015) Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J Tissue Eng Regen Med 9(11):1217–1224

    Article  PubMed  Google Scholar 

  44. Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013:130763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Khurana A, Nejadnik H, Chapelin F, Lenkov O, Gawande R, Lee S, Gupta SN, Aflakian N, Derugin N, Messing S et al (2013) Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond) 8(12):1969–1983

    Article  CAS  Google Scholar 

  46. Lin CS, Xin ZC, Dai J, Lue TF (2013) Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol 28(9):1109–1116

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Zwingenberger S, Yao Z, Jacobi A, Vater C, Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK et al (2014) Enhancement of BMP-2 induced bone regeneration by SDF-1α mediated stem cell recruitment. Tissue Eng A 20(3–4):810–818

    CAS  Google Scholar 

Download references

Funding

This work was supported in part by NIH grants R01AR063717-06 and NCATS 1UG3TR002136-01, and the Ellenburg Chair in Surgery at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart B. Goodman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodman, S.B. The biological basis for concentrated iliac crest aspirate to enhance core decompression in the treatment of osteonecrosis. International Orthopaedics (SICOT) 42, 1705–1709 (2018). https://doi.org/10.1007/s00264-018-3830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-018-3830-1

Keywords

Navigation