Skip to main content

Advertisement

Log in

A novel combined hemipelvic endoprosthesis for peri-acetabular tumours involving sacroiliac joint: a finite element study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Our aim was to introduce a novel combined hemipelvic endoprosthesis for pelvic reconstruction after Enneking type I/II/IV resection and to evaluate the biomechanical properties of the endoprosthesis using finite element analysis.

Methods

A three-dimensional finite element model of the postoperative pelvis was developed based on computed tomography (CT) images of the patient with the best post-operative limb function. A force of 400 N was applied along the longitudinal axis of the normal and post-operative pelvis for two positions: standing on two feet and sitting. Stress-distribution analysis was performed in both positions, and results were compared. Prosthesis improvements were simulated by intervertebral fusion and extra screw fixation.

Results

In the normal pelvis, stress distributions were mostly concentrated on the superior area of the acetabulum, arcuate line, sacroiliac joint and sacral midline in both static conditions, and peak stresses of 1.52 MPa and 4.53 MPa were observed at the superior area of the greater sciatic notch and ischial tuberosity, respectively. For the reconstructed hemipelvis, stress distributions were concentrated on the connecting rods of the acetabular component and the proximal segment of the pedicle rods, and peak stresses of 252 MPa and 213 MPa were observed on the proximal pedicle rods of the fourth lumbar vertebra for standing and sitting, respectively. Interbody fusion of the fourth and fifth lumbar vertebrae and extra screw fixation to the sacrum decreased the peak stresses by 33.0 % and 18.3 % while standing and by 10.8 % and 6.6 % while sitting.

Conclusion

Reconstruction with combined hemipelvic endoprosthesis after types I/II/IV resection of the pelvis fulfilled physiological and biomechanical demands of the hemipelvis and yielded good biomechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muller PE, Durr HR, Wegener B, Pellengahr C, Refior HJ, Jansson V (2002) Internal hemipelvectomy and reconstruction with a megaprosthesis. Int Orthop 26:76–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Witte D, Bernd L, Bruns J, Gosheger G, Hardes J, Hartwig E, Lehner B, Melcher I, Mutschler W, Schulte M, Tunn PU, Wozniak W, Zahlten-Hinguranage A, Zeifang F (2009) Limb-salvage reconstruction with MUTARS hemipelvic endoprosthesis: a prospective multicenter study. Eur J Surg Oncol 35:1318–1325. doi:10.1016/j.ejso.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  3. Ji T, Guo W, Yang RL, Tang XD, Wang YF (2013) Modular hemipelvic endoprosthesis reconstruction--experience in 100 patients with mid-term follow-up results. Eur J Surg Oncol 39:53–60. doi:10.1016/j.ejso.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  4. Court C, Bosca L, Le Cesne A, Nordin JY, Missenard G (2006) Surgical excision of bone sarcomas involving the sacroiliac joint. Clin Orthop Relat Res 451:189–194. doi:10.1097/01.blo.0000229279.58947.91

    Article  CAS  PubMed  Google Scholar 

  5. Kim JE, Li Z, Ito Y, Huber CD, Shih AM, Eberhardt AW, Yang KH, King AI, Soni BK (2009) Finite element model development of a child pelvis with optimization-based material identification. J Biomech 42:2191–2195. doi:10.1016/j.jbiomech.2009.06.010

    Article  PubMed  Google Scholar 

  6. Levine DL, Dharia MA, Siggelkow E, Crowninshield RD, Degroff DA, Wentz DH (2010) Repair of periprosthetic pelvis defects with porous metal implants: a finite element study. J Biomech Eng 132:021006. doi:10.1115/1.4000853

    Article  PubMed  Google Scholar 

  7. Zhou Y, Min L, Liu Y, Shi R, Zhang W, Zhang H, Duan H, Tu C (2013) Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction. Int Orthop. doi:10.1007/s00264-012-1756-6

    Google Scholar 

  8. Enneking W, Dunham W, Gebhardt M, Malawar M, Pritchard D (1990) A system for the classification of skeletal resections. Chir Organi Mov 75:217–240

    CAS  PubMed  Google Scholar 

  9. Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ (1993) A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res 286(286):241–246

  10. Enneking WF (1986) A system of staging musculoskeletal neoplasms. Clin Orthop Relat Res 204(204):9–24

  11. Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ (2007) The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis. Clin Biomech (Bristol, Avon) 22:988–998. doi:10.1016/j.clinbiomech.2007.07.008

    Article  Google Scholar 

  12. Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127:364–373

    Article  PubMed  Google Scholar 

  13. Li Z, Kim JE, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW (2007) Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 40:2758–2766. doi:10.1016/j.jbiomech.2007.01.023

    Article  PubMed  Google Scholar 

  14. Tanino H, Ito H, Higa M, Omizu N, Nishimura I, Matsuda K, Mitamura Y, Matsuno T (2006) Three-dimensional computer-aided design based design sensitivity analysis and shape optimization of the stem using adaptive p-method. J Biomech 39:1948–1953. doi:10.1016/j.jbiomech.2005.05.024

    Article  CAS  PubMed  Google Scholar 

  15. Jaiswal PK, Aston WJ, Grimer RJ, Abudu A, Carter S, Blunn G, Briggs TW, Cannon S (2008) Peri-acetabular resection and endoprosthetic reconstruction for tumours of the acetabulum. J Bone Joint Surg (Br) 90:1222–1227. doi:10.1302/0301-620X.90B9.20758

    Article  CAS  Google Scholar 

  16. Dalstra M, Huiskes R (1995) Load transfer across the pelvic bone. J Biomech 28:715–724

    Article  CAS  PubMed  Google Scholar 

  17. Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30:959–965

    Article  CAS  PubMed  Google Scholar 

  18. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26:969–990

    Article  CAS  PubMed  Google Scholar 

  19. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  CAS  PubMed  Google Scholar 

  20. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine8:817–831

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors have read and approved the final submitted manuscript.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Ouyang or Jingnan Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Sun, P., Xie, X. et al. A novel combined hemipelvic endoprosthesis for peri-acetabular tumours involving sacroiliac joint: a finite element study. International Orthopaedics (SICOT) 39, 2253–2259 (2015). https://doi.org/10.1007/s00264-015-2891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2891-7

Keywords

Navigation