Skip to main content

Advertisement

Log in

Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purposes

Diabetes mellitus (DM) is thought to be an important aetiological factor in intervertebral disc degeneration. A glucose-mediated increase of oxidative stress is a major causative factor in development of diseases associated with DM. The aim of this study was to investigate the effect of high glucose on mitochondrial damage, oxidative stress and senescence of young annulus fibrosus (AF) cells.

Methods

AF cells were isolated from four-week-old young rats, cultured, and placed in either 10 % FBS (normal control) or 10 % FBS plus two different high glucose concentrations (0.1 M and 0.2 M) (experimental conditions) for one and three days. We identified and quantified the mitochondrial damage and reactive oxygen species (ROS) (oxidative stress). We also identified and quantified the occurrence of senescence and telomerase activity. Finally, the expressions of proteins were determined related to replicative senescence (p53-p21-pRB) and stress-induced senescence (p16-pRB).

Results

Two high glucoses enhanced the mitochondrial damage in young rat AF cells, which resulted in an excessive generation of ROS in a dose- and time-dependent manner for one and three days compared to normal control. Two high glucose concentrations increased the occurrence of senescence of young AF cells in a dose- and time-dependent manner. Telomerase activity declined in a dose- and time-dependent manner. Both high glucose treatments increased the expressions of p16 and pRB proteins in young rat AF cells for one and three days. However, compared to normal control, the expressions of p53 and p21 proteins were decreased in young rat AF cells treated with both high glucoses for one and three days.

Conclusions

The present study demonstrated that high glucose-induced oxidative stress accelerates premature stress-induced senescence in young rat AF cells in a dose- and time-dependent manner rather than replicative senescence. These results suggest that prevention of excessive generation of oxidative stress by strict blood glucose control could be important to prevent or to delay premature intervertebral disc degeneration in young patients with DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 23:469–480

    Article  CAS  PubMed  Google Scholar 

  2. McClelland AD, Kantharidis P (2014) MicroRNA in the development of diabetic complications. Clin Sci (Lond) 126:95–110

    Article  CAS  Google Scholar 

  3. Won HY, Park JB, Park EY, Riew KD (2009) Effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats. J Neurosurg Spine 11:741–748

    Article  PubMed  Google Scholar 

  4. Park EY, Park JB (2013) Dose- and time-dependent effect of high glucose concentration on viability of notochordal cells and expression of matrix degrading and fibrotic enzymes. Int Orthop 37:1179–1186

    Article  PubMed  Google Scholar 

  5. Park EY, Park JB (2013) High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells. Int Orthop 37:2507–2514

    Article  PubMed  Google Scholar 

  6. Mobbs RJ, Newcombe RL, Chandran KN (2001) Lumbar discectomy and the diabetic patient: incidence and outcome. J Clin Neurosci 8:10–13

    Article  CAS  PubMed  Google Scholar 

  7. Sakellaridis N (2006) The influence of diabetes mellitus on lumbar intervertebral disk herniation. Surg Neurol 66:152–154

    Article  PubMed  Google Scholar 

  8. Simpson JM, Silveri CP, Balderston RA, Simeone FA, An HS (1993) The results of operations on the lumbar spine in patients who have diabetes mellitus. J Bone Joint Surg Am 75:1823–1829

    CAS  PubMed  Google Scholar 

  9. Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K, An HS (2003) The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 28:9829–9890

    Google Scholar 

  10. Tsirpanlis T (2008) Cellular senescence, cardiovascular risk, and CKD. A review of established and hypothetical interconnections. Am J Kidney Dis 51:131–144

    Article  PubMed  Google Scholar 

  11. Shimada H, Sakakima H, Tsuchimochi K, Masuda F, Komiya S, Goldring MB, Ijiri K (2011) Senescence of chondrocytes in aging articular cartilage: GADD45 mediates p21 expression in association with C/EBP in senescence-accelerated mice. Pathol Res Pract 207:225–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Unterluggauera H, Hampela B, Zwerschkea W, Jansen-Dürr P (2003) Senescence-associated cell death of human endothelial cells: the role of oxidative stress. Exp Gerontol 38:1149–1160

    Article  Google Scholar 

  13. Khan IM, Gilbert SJ, Caterson B, Sandell LJ, Archer CW (2008) Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(-) in adult bovine articular cartilage. Osteoarthritis Cartilage 16:698–707

    Article  CAS  PubMed  Google Scholar 

  14. Chainiaux F, Magalhaes JP, Eliaers F, Remacle J, Toussaint O (2002) UVB-induced premature senescence of human diploid skin fibroblasts. Int J Biochem Cell Biol 34:1331–1339

    Article  CAS  PubMed  Google Scholar 

  15. Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ, Papavassiliou AG, Kletsas D (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest 85:502–511

    Article  CAS  PubMed  Google Scholar 

  16. Severino J, Allen RG, Balin S, Cristofalo VJ (2000) Is b-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    Article  CAS  PubMed  Google Scholar 

  17. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubeli I, Pereira-Smith O, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kurz DJ, Decary S, HongY EJD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 13:3613–3622

    Google Scholar 

  19. Zhao CQ, Wang LM, Jiang LS, Dai LY (2007) The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 6:247–261

    Article  PubMed  Google Scholar 

  20. Gruber HE, Watts JA, Hoelscher GL, Bethea SF, Ingram JA, Zinchenko NS, Hanlet EN Jr (2011) Mitochondrial gene expression in the human annulus: in vivo data from annulus cells and selectively harvested senescent annulus cells. Spine J 11:782–791

    Article  PubMed  Google Scholar 

  21. Roberts S, Evans H, Kletsas D, Jaffray DC, Eisenstein SM (2006) Senescence in human intervertebral discs. Eur Spine J 15(Suppl 3):S312–S316

    Article  PubMed  Google Scholar 

  22. Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr (2007) Senescence in cells of the aging and degenerating intervertebral disc immunolocalization of senescence-associated-galactosidase in human and sand rat discs. Spine 32:321–327

    Article  PubMed  Google Scholar 

  23. Kletsas D (2009) Senescent cells in the intervertebral disc: numbers and mechanisms. Spine J 9:677–678

    Article  PubMed  Google Scholar 

  24. Kim KW, Chung HN, Ha KY, Lee JS, Kim YY (2009) Senescence mechanisms of nuclear pulposus chondrocytes in human intervertebral discs. Spine J 9:658–666

    Article  PubMed  Google Scholar 

  25. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  CAS  PubMed  Google Scholar 

  26. Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9:343–353

    Article  CAS  PubMed  Google Scholar 

  27. Dorn GW 2nd (2010) Mechanism of non-apoptotic programmed cell death in diabetes and heart failure. Cell Cycle 9:3442–3448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Victor VM, Rocha M, Herance R, Hernandez-Mijares A (2011) Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des 17:3947–3958

    Article  CAS  PubMed  Google Scholar 

  29. Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P (2011) Oxidative stress induces senescence in chondrocytes. J Orthop Res 29:1114–1120

    Article  CAS  PubMed  Google Scholar 

  30. Furukawa A, Tada-Oikawa S, Kawanishi S, Oikawa S (2007) H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD + depletion. Cell Physiol Biochem 20:45–54

    CAS  PubMed  Google Scholar 

  31. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  CAS  PubMed  Google Scholar 

  32. Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11:S27–S31

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Beom Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JS., Park, JB., Park, IJ. et al. Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress. International Orthopaedics (SICOT) 38, 1311–1320 (2014). https://doi.org/10.1007/s00264-014-2296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2296-z

Keywords

Navigation