Skip to main content

Advertisement

Log in

Characterisation of in vivo release of gentamicin from polymethyl methacrylate cement using a novel method

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the in vivo elution kinetics of gentamicin from bone cement by assessing antibiotic levels in the urine.

Methods

Urinary samples of 35 patients who had undergone primary total hip arthroplasty were collected post-operatively. Gentamicin concentrations were analysed using the fluorescence polarisation immunoassay technique.

Results

The mean duration of urinary gentamicin release in all cases was 43 days (range 13–95). There was still detectable gentamicin at the final collection in 20 % (7/35) of cases, and in these cases, the mean gentamicin release was 71 days.

Conclusions

From the assessment of urinary gentamicin, we were able to demonstrate the biphasic gentamicin elution from bone cement. In addition, there were detectable concentrations of the antibiotic from the urinary samples for prolonged periods of up to two to six months. Our study indicates that the assessment of urinary antibiotics can offer a non-invasive method of monitoring the in vivo release kinetics of antibiotics from bone cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anagnostakos K, Wilmes P, Schmitt E et al (2009) Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop 80:193–197

    Article  PubMed  Google Scholar 

  2. Armstrong M, Spencer RF, Lovering AM et al (2002) Antibiotic elution from bone cement: a study of common cement-antibiotic combinations. Hip Int 12:23–27

    Google Scholar 

  3. Beeching NJ, Thomas MG, Roberts S et al (1986) Comparative in-vitro activity of antibiotics incorporated in acrylic bone cement. J Antimicrob Chemother 17:173–184

    Article  PubMed  CAS  Google Scholar 

  4. Buchholz HW, Elson RA, Heinert K (1984) Antibiotic-loaded acrylic cement: current concepts. Clin Orthop Relat Res 190:96–108

    PubMed  Google Scholar 

  5. Buchholz HW, Engelbrecht H (1970) Depot effects of various antibiotics mixed with Palacos resins. Chirurg 41:511–515

    PubMed  CAS  Google Scholar 

  6. Carlsson AK, Lidgren L, Lindberg L (1977) Prophylactic antibiotics against early and late deep infections after total hip replacements. Acta Orthop Scand 48:405–410

    Article  PubMed  CAS  Google Scholar 

  7. Chohfi M, Langlais F, Fourastier J et al (1998) Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement. Int Orthop 22:171–177

    Article  PubMed  CAS  Google Scholar 

  8. Choi HR, von Knoch F, Kandil AO et al (2012) Retention treatment after periprosthetic total hip arthroplasty infection. Int Orthop 36:723–729

    Article  PubMed  Google Scholar 

  9. Costerton JW (2005) Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res 437:7–11

    Article  PubMed  Google Scholar 

  10. Dale H, Hallan G, Hallan G et al (2009) Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop 80:639–645

    Article  PubMed  Google Scholar 

  11. Elson RA, Jephcott AE, McGechie DB et al (1977) Bacterial infection and acrylic cement in the rat. J Bone Joint Surg Br 59-B:452–457

    PubMed  CAS  Google Scholar 

  12. Ericson C, Lidgren L, Lindberg L (1973) Cloxacillin in the prophylaxis of postoperative infections of the hip. J Bone Joint Surg Am 55(4):808–813, 843

    PubMed  CAS  Google Scholar 

  13. Fink B, Vogt S, Reinsch M et al (2011) Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin Orthop Relat Res 469:3141–3147

    Article  PubMed  Google Scholar 

  14. Gristina AG, Costerton JW (1985) Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am 67:264–273

    PubMed  CAS  Google Scholar 

  15. Hendriks JG, Neut D, van Horn JR et al (2005) Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. J Bone Joint Surg Br 87:272–276

    PubMed  CAS  Google Scholar 

  16. Josefsson G, Kolmert L (1993) Prophylaxis with systematic antibiotics versus gentamicin bone cement in total hip arthroplasty. A ten-year survey of 1,688 hips. Clin Orthop Relat Res 292:210–214

    PubMed  Google Scholar 

  17. Kuechle DK, Landon GC, Musher DM et al (1991) Elution of vancomycin, daptomycin, and amikacin from acrylic bone cement. Clin Orthop Relat Res 264:302–308

    PubMed  Google Scholar 

  18. Lovering AM, White LO, MacGowan AP et al (1996) The elution and binding characteristics of rifampicin for three commercially available protein-sealed vascular grafts. J Antimicrob Chemother 38:599–604

    Article  PubMed  CAS  Google Scholar 

  19. Malchau H, Herberts P (1998) Prognosis of total hip replacement. Revision and re- revision rate in THR. A revision-risk study of 148,359 primary operations. Proceedings of AAOS, 65th Annual Meeting of the American Academy of Orthopaedic Surgeons, 19–23 March 1998, New Orleans

  20. Montanaro L, Speziale P, Campoccia D et al (2011) Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6:1329–1349

    Article  PubMed  CAS  Google Scholar 

  21. Sterling GJ, Crawford S, Potter JH et al (2003) The pharmacokinetics of Simplex-tobramycin bone cement. J Bone Joint Surg Br 85:646–649

    PubMed  CAS  Google Scholar 

  22. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  23. Swedish Hip Arthroplasty Register (2010) Annual report 2010. http://www.shpr.se

  24. Wahlig H, Dingeldein E (1980) Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand 51:49–56

    Article  PubMed  CAS  Google Scholar 

  25. Whelton A (1984) The aminoglycosides. Clin Orthop Relat Res 190:66–74

    PubMed  Google Scholar 

  26. White LO, MacGowan AP, Lovering AM et al (1994) Assay of low trough serum gentamicin concentrations by fluorescence polarization immunoassay. J Antimicrob Chemother 33:1068–1070

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Gbejuade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, J.C., Gbejuade, H., Lovering, A. et al. Characterisation of in vivo release of gentamicin from polymethyl methacrylate cement using a novel method. International Orthopaedics (SICOT) 37, 2031–2036 (2013). https://doi.org/10.1007/s00264-013-1914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-1914-5

Keywords

Navigation