Skip to main content

Advertisement

Log in

Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the biomechanics of the pelvis reconstructed with a modular hemipelvic prosthesis using finite element (FE) analysis.

Methods

A three-dimensional FE model of the postoperative pelvis was developed and input into the Abaqus FEA software version 6.7.1. Mesh refinement tests were then performed and a force of 500 N was applied at the lamina terminalis of the fifth lumbar vertebra along the longitudinal axis of the normal pelvis and the postoperative pelvis for three positions: sitting, standing on two feet, and standing on the foot of the affected side. Stress distribution analysis was performed between the normal pelvis and postoperative pelvis at these three static positions.

Results

In the normal pelvis, stress distribution was concentrated on the superior area of the acetabulum, arcuate line, sacroiliac joint, sacral midline and, in particular, the superior area of the greater sciatic notch. In the affected postoperative hemipelvis, stress distribution was concentrated on the proximal area of the pubic plate, the top of the acetabular cup, the connection between the CS-fixator and acetabular cup and the fixation between the prosthesis and sacroiliac joint.

Conclusions

Stress distribution of the postoperative pelvis was similar to the normal pelvis at three different static positions. Reconstruction with a modular hemipelvic prosthesis yielded good biomechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bell RS, Davis AM, Wunder JS, Buconjic T, McGoveran B, Gross AE (1997) Allograft reconstruction of the acetabulum after resection of grade II B sarcoma. Intermediate term results. J Bone Joint Surg 79A:1663–1674

    Google Scholar 

  2. Kohler R, Lorge F, Brunat-Mentigny M, Noyer D, Patricot L (1990) Massive bone allografts in children. Int Orthop 14:249–253

    Article  PubMed  CAS  Google Scholar 

  3. Matejovsky Z Jr, Matejovsky Z, Kofranek I (2006) Massive allografts in tumour surgery. Int Orthop 30:478–483

    Article  PubMed  Google Scholar 

  4. Ozaki T, Hillmann A, Bettin D, Wuisman P, Winkelmann W (1996) High complication rates with pelvic allografts: Experience of 22 sarcoma resections. Acta Orthop Scand 67:333–338

    Article  PubMed  CAS  Google Scholar 

  5. Harrington KD (1992) The use of hemipelvis allografts or autoclaved grafts for reconstruction after wide resection of malignant tumors of the pelvis. J Bone Joint Surg 74:331–341

    PubMed  CAS  Google Scholar 

  6. Campanacci D, Chacon S, Mondanelli N, Beltrami G, Scoccianti G, Caff G, Frenos F, Capanna R (2012) Pelvic massive allograft reconstruction after bone tumour resection. Int Orthop 36:2529–2536

    Google Scholar 

  7. Abudu A, Grimer RJ, Cannon SR, Carter SR, Sneath RS (1997) Reconstruction of the hemipelvis after excision of malignant tumors. J Bone Joint Surg 79:773–779

    Article  CAS  Google Scholar 

  8. Gradinger R, Rechl H, Hipp E (1991) Pelvic osteosarcoma. Clin Orthop Relat Res 270:149–157

    PubMed  Google Scholar 

  9. Windhager R, Karner J, Kutschera HP, Polterauer P, Salzer-Kuntschik M, Kotz R (1996) Limb salvage in periacetabular sarcomas: review of 21 consecutive cases. Clin Orthop Relat Res 331:265–276

    Article  PubMed  Google Scholar 

  10. Aboulafia AJ, Buch R, Mathews J, Li W, Malawer MM (1995) Reconstruction using the saddle prosthesis following excision of primary and metastatic periacetabular tumors. Clin Orthop Relat Res 314:203–213

    PubMed  Google Scholar 

  11. Aljassir F, Beadel GP, Turcotte RE, Griffin AM, Bell RS, Wunder JS, Isler MH (2005) Outcome after pelvic sarcoma resection reconstructed with saddle prosthesis. Clin Orthop Relat Res 438:36–41

    Article  PubMed  Google Scholar 

  12. Benevenia J, Cyran FP, Biermann JS, Patterson FR, Leeson MC (2004) Treatment of advanced metastatic lesions of the acetabulum using the saddle prosthesis. Clin Orthop Relat Res 426:23–31

    Article  PubMed  Google Scholar 

  13. Guo W, Li D, Tang X (2007) Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthop Relat Res 461:180–188

    PubMed  Google Scholar 

  14. Zhou Y, Duan H, Liu Y, Min L, Kong Q, Tu C (2011) Outcome after pelvic sarcoma resection and reconstruction with a modular hemipelvic prostheses. Int Orthop 35(12):1839–1846

    Article  PubMed  Google Scholar 

  15. Kim JE, Li Z, Ito Y, Huber CD, Shih AM, Eberhardt AW, Yang KH, King AI, Soni BK (2009) Finite element model development of a child pelvis with optimization-based material identification. J Biomech 42:2191–2195

    Article  PubMed  Google Scholar 

  16. Kaku N, Tsumura H, Taira H, Sawatari T, Torisu T (2004) Biomechanical study of load transfer of the pubic ramus due to pelvic inclination after hip joint surgery using a three-dimensional finite element model. J Orthop Sci 9:264–269

    Article  PubMed  Google Scholar 

  17. Levine DL, Dharia MA, Siggelkow E, Crowninshield RD, Degroff DA, Wentz DH (2010) Repair of periprosthetic pelvis defects with porous metal implants: a finite element study. J Biomech Eng 132:021006

    Article  PubMed  Google Scholar 

  18. Majumder S, Roychowdhury A, Pal S (2009) Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex. J Biomech 42:1475–1482

    Article  PubMed  Google Scholar 

  19. Ivanov AA, Kiapour A, Ebraheim NA, Goel V (2009) Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Spine 34:E162–169

    Article  PubMed  Google Scholar 

  20. Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127:364–373

    Article  PubMed  Google Scholar 

  21. Dalstra M, Huiskes R (1995) Load transfer across the pelvic bone. J Biomech 28:715–724

    Article  PubMed  CAS  Google Scholar 

  22. Li Z, Alonso JE, Kim JE, Davidson JS, Etheridge BS, Eberhardt AW (2006) Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Ann Biomed Eng 34:1452–62

    Article  PubMed  Google Scholar 

  23. Davy DT, Connolly JF (1982) The biomechanical behaviour of healing canine radii and ribs. J Biomech 15:235–247

    Article  PubMed  CAS  Google Scholar 

  24. Li Z, Kim JE, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW (2007) Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 40:2758–2766

    Article  PubMed  Google Scholar 

  25. Tanino H, Ito H, Higa M, Omizu N, Nishimura I, Matsuda K, Mitamura Y, Matsuno T (2006) Three-dimensional computer-aided design based design sensitivity analysis and shape optimization of the stem using adaptive p-method. J Biomech 39:1948–1953

    Article  PubMed  CAS  Google Scholar 

  26. Ozaki T, Hoffmann C, Hillmann A, Gosheger G, Lindner N, Winkelmann W (2002) Implantation of hemipelvic prosthesis after resection of sarcoma. Clin Orthop Relat Res 396:197–205

    Article  PubMed  Google Scholar 

  27. Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30:959–965

    Article  PubMed  CAS  Google Scholar 

  28. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26:969–990

    Article  PubMed  CAS  Google Scholar 

  29. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongqi Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Min, L., Liu, Y. et al. Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction. International Orthopaedics (SICOT) 37, 653–658 (2013). https://doi.org/10.1007/s00264-012-1756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1756-6

Keywords

Navigation