Skip to main content

Advertisement

Log in

Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body

  • Review Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Tendon-bone healing is a progressive and complex pathophysiological process after tendon graft transplantation into a bone tunnel. A fibrous scar tissue layer forms at the graft-bone interface, which means a weak bonding of the graft in the bone tunnel. Periosteum, a favourable autologous tissue, was confirmed to be effective in promoting tendon-bone healing in the human body. The advantages of a periosteum patch for tendon-bone repair include the fact that this tissue meets the three primary requirements for tissue engineering: a source of progenitor cells, a scaffold for recruiting cells and growth factors, and a source of local growth factors. Furthermore, the periosteum can prevent graft micromotion, alleviate inflammation and deter bone resorption. In this review, we highlight the role of progenitor cells in the periosteum, which contribute to the regeneration of new bone and/or fibrocartilage at the tendon-bone interface. In summary, the periosteum has shown significant potential for use in the enhancement of graft-bone healing. Our investigations may provoke further studies on the management of allograft-bone healing and artificial ligament graft healing using a periosteum patch in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner T, Soeder S, Haag J (2006) IL-1beta and BMPs–interactive players of cartilage matrix degradation and regeneration. Eur Cell Mater 12:49–56

    PubMed  CAS  Google Scholar 

  2. Allen MR, Hock JM, Burr DB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35:1003–1012

    Article  PubMed  CAS  Google Scholar 

  3. Anderson K, Seneviratne AM, Izawa K, Atkinson BL, Potter HG, Rodeo SA (2001) Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med 29:689–698

    PubMed  CAS  Google Scholar 

  4. Chen CH (2009) Graft healing in anterior cruciate ligament reconstruction. Sports Med Arthrosc Rehabil Ther Technol 1:21

    Article  PubMed  Google Scholar 

  5. Chen CH (2009) Strategies to enhance tendon graft–bone healing in anterior cruciate ligament reconstruction. Chang Gung Med J 32:483–493

    PubMed  Google Scholar 

  6. Chen CH, Chang CH, Su CI, Wang KC, Liu HT, Yu CM, Wong CB, Wang IC (2010) Arthroscopic single-bundle anterior cruciate ligament reconstruction with periosteum-enveloping hamstring tendon graft: clinical outcome at 2 to 7 years. Arthroscopy 26:907–917

    Article  PubMed  Google Scholar 

  7. Chen CH, Chen WJ, Shih CH (2002) Enveloping of periosteum on the hamstring tendon graft in anterior cruciate ligament reconstruction. Arthroscopy 18:27E

    PubMed  Google Scholar 

  8. Chen CH, Chen WJ, Shih CH, Chou SW (2004) Arthroscopic anterior cruciate ligament reconstruction with periosteum-enveloping hamstring tendon graft. Knee Surg Sports Traumatol Arthrosc 12:398–405

    PubMed  Google Scholar 

  9. Chen CH, Chen WJ, Shih CH, Yang CY, Liu SJ, Lin PY (2003) Enveloping the tendon graft with periosteum to enhance tendon-bone healing in a bone tunnel: a biomechanical and histologic study in rabbits. Arthroscopy 19:290–296

    Article  PubMed  Google Scholar 

  10. Chen CH, Liu HW, Tsai CL, Yu CM, Lin IH, Hsiue GH (2008) Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am J Sports Med 36:461–473

    Article  PubMed  Google Scholar 

  11. Chen D, Shen H, Shao J, Jiang Y, Lu J, He Y, Huang C (2011) Superior mineralization and neovascularization capacity of adult human metaphyseal periosteum-derived cells for skeletal tissue engineering applications. Int J Mol Med 27:707–713

    PubMed  CAS  Google Scholar 

  12. De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95

    Article  PubMed  Google Scholar 

  13. Demirag B, Sarisozen B, Ozer O, Kaplan T, Ozturk C (2005) Enhancement of tendon-bone healing of anterior cruciate ligament grafts by blockage of matrix metalloproteinases. J Bone Joint Surg Am 87:2401–2410

    Article  PubMed  Google Scholar 

  14. Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol 39:319–323

    Article  PubMed  Google Scholar 

  15. Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:935–947

    Article  PubMed  Google Scholar 

  16. Gulotta LV, Kovacevic D, Ying L, Ehteshami JR, Montgomery S, Rodeo SA (2008) Augmentation of tendon-to-bone healing with a magnesium-based bone adhesive. Am J Sports Med 36:1290–1297

    Article  PubMed  Google Scholar 

  17. Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, Rodeo SA (2008) The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am 90:565–579

    Article  PubMed  Google Scholar 

  18. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249

    Article  PubMed  CAS  Google Scholar 

  19. Huard J, Li Y, Peng H, Fu FH (2003) Gene therapy and tissue engineering for sports medicine. J Gene Med 5:93–108

    Article  PubMed  Google Scholar 

  20. Ishikawa H, Koshino T, Takeuchi R, Saito T (2001) Effects of collagen gel mixed with hydroxyapatite powder on interface between newly formed bone and grafted Achilles tendon in rabbit femoral bone tunnel. Biomaterials 22:1689–1694

    Article  PubMed  CAS  Google Scholar 

  21. Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW (2001) Localization of chondrocyte precursors in periosteum. Osteoarthritis Cartilage 9:215–223

    Article  PubMed  CAS  Google Scholar 

  22. Karaoglu S, Celik C, Korkusuz P (2009) The effects of bone marrow or periosteum on tendon-to-bone tunnel healing in a rabbit model. Knee Surg Sports Traumatol Arthrosc 17:170–178

    Article  PubMed  Google Scholar 

  23. Kobayashi M, Watanabe N, Oshima Y, Kajikawa Y, Kawata M, Kubo T (2005) The fate of host and graft cells in early healing of bone tunnel after tendon graft. Am J Sports Med 33:1892–1897

    Article  PubMed  Google Scholar 

  24. Kovacevic D, Fox AJ, Bedi A, Ying L, Deng XH, Warren RF, Rodeo SA (2011) Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med 39:811–819

    Article  PubMed  Google Scholar 

  25. Kyung HS, Kim SY, Oh CW, Kim SJ (2003) Tendon-to-bone tunnel healing in a rabbit model: the effect of periosteum augmentation at the tendon-to-bone interface. Knee Surg Sports Traumatol Arthrosc 11:9–15

    PubMed  Google Scholar 

  26. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20:899–910

    Article  PubMed  Google Scholar 

  27. Lu H, Qin L, Fok P, Cheung W, Lee K, Guo X, Wong W, Leung K (2006) Low-intensity pulsed ultrasound accelerates bone-tendon junction healing: a partial patellectomy model in rabbits. Am J Sports Med 34:1287–1296

    Article  PubMed  Google Scholar 

  28. Lui P, Zhang P, Chan K, Qin L (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 5:59

    Article  PubMed  Google Scholar 

  29. Ma CB, Kawamura S, Deng XH, Ying L, Schneidkraut J, Hays P, Rodeo SA (2007) Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med 35:597–604

    Article  PubMed  Google Scholar 

  30. Mihelic R, Pecina M, Jelic M, Zoricic S, Kusec V, Simic P, Bobinac D, Lah B, Legovic D, Vukicevic S (2004) Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med 32:1619–1625

    Article  PubMed  Google Scholar 

  31. Mutsuzaki H, Sakane M, Nakajima H, Ito A, Hattori S, Miyanaga Y, Ochiai N, Tanaka J (2004) Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion. J Biomed Mater Res A 70:319–327

    Article  PubMed  Google Scholar 

  32. O’Driscoll SW, Fitzsimmons JS (2001) The role of periosteum in cartilage repair. Clin Orthop Relat Res 391 Suppl:S190–S207

    Article  PubMed  Google Scholar 

  33. Ouyang HW, Goh JC, Lee EH (2004) Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med 32:321–327

    Article  PubMed  Google Scholar 

  34. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790–1800

    Article  PubMed  Google Scholar 

  35. Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27:476–488

    PubMed  CAS  Google Scholar 

  36. Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y, Kinoshita K, Tei K, Akisue T, Tabata Y, Kurosaka M (2008) Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med 36:1519–1527

    Article  PubMed  Google Scholar 

  37. Tien YC, Chih TT, Lin JH, Ju CP, Lin SD (2004) Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J Bone Joint Surg Br 86:1072–1076

    Article  PubMed  CAS  Google Scholar 

  38. Wang L, Qin L, Lu HB, Cheung WH, Yang H, Wong WN, Chan KM, Leung KS (2008) Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing. Am J Sports Med 36:340–347

    Article  PubMed  CAS  Google Scholar 

  39. Wang Q, Huang C, Xue M, Zhang X (2011) Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone 48:524–532

    Article  PubMed  CAS  Google Scholar 

  40. Weiler A, Förster C, Hunt P, Falk R, Jung T, Unterhauser FN, Bergmann V, Schmidmaier G, Haas NP (2004) The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med 32:881–891

    Article  PubMed  Google Scholar 

  41. Wen CY, Qin L, Lee KM, Wong MW, Chan KM (2009) Influence of bone adaptation on tendon-to-bone healing in bone tunnel after anterior cruciate ligament reconstruction in a rabbit model. J Orthop Res 27:1447–1456

    Article  PubMed  Google Scholar 

  42. Yamazaki S, Yasuda K, Tomita F, Tohyama H, Minami A (2005) The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy 21:1034–1041

    Article  PubMed  Google Scholar 

  43. Youn I, Jones DG, Andrews PJ, Cook MP, Suh JK (2004) Periosteal augmentation of a tendon graft improves tendon healing in the bone tunnel. Clin Orthop Relat Res 419:223–231

    Article  PubMed  Google Scholar 

  44. Yu YY, Lieu S, Lu C, Colnot C (2010) Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone 47:65–73

    Article  PubMed  CAS  Google Scholar 

  45. Zhang X, Awad HA, O’Keefe RJ, Guldberg RE, Schwarz EM (2008) A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 466:1777–1787

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This project was subsidised by the 973 Project (No. 2009CB930000) from the Ministry of Science and Technology of China and the Nano project of Shanghai Municipal Science and Technology Commission (1052nm03701).

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Jiang, J., Wu, Y. et al. Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body. International Orthopaedics (SICOT) 36, 665–669 (2012). https://doi.org/10.1007/s00264-011-1346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-011-1346-z

Keywords

Navigation